Fire-Flame Detection using Fuzzy Finite Automata

퍼지 유한상태 오토마타를 이용한 화재 불꽃 감지

  • 함선재 (계명대학교 컴퓨터공학과) ;
  • 고병철 (계명대학교 컴퓨터공학과)
  • Received : 2010.05.10
  • Accepted : 2010.07.05
  • Published : 2010.09.15

Abstract

This paper proposes a new fire-flame detection method using probabilistic membership function of visual features and Fuzzy Finite Automata (FFA). First, moving regions are detected by analyzing the background subtraction and candidate flame regions then identified by applying flame color models. Since flame regions generally have continuous and an irregular pattern continuously, membership functions of variance of intensity, wavelet energy and motion orientation are generated and applied to FFA. Since FFA combines the capabilities of automata with fuzzy logic, it not only provides a systemic approach to handle uncertainty in computational systems, but also can handle continuous spaces. The proposed algorithm is successfully applied to various fire videos and shows a better detection performance when compared with other methods.

본 논문에서는 화재 불꽃의 시각적 특징들을 확률적인 멤버십 함수로 모델링하고 이를 퍼지 유한상태 오토마타에 적용한 새로운 화재 불꽃 감지 알고리즘을 제안한다. 먼저 입력된 영상에서 배경모델을 이용하여 움직임 영역을 추출하고 불꽃 색상 모델을 적용하여 최종 화재 후보 영역을 결정한다. 불꽃영역은 일반적으로 연속적이며 불규칙한 패턴을 가지고 있으므로 명도와 웨이블릿 에너지의 왜도 값과 모션의 상승 방향성을 이용하여 확률모델을 생성하고 이를 퍼지 유한상태 오토마타에 적용한다. 퍼지 유한상태 오토마타는 오토마타의 성능과 퍼지 로직이 결합된 형태로 컴퓨터 시스템에서 불확실한 문제뿐 아니라 연속적인 공간에서 발생하는 문제를 처리하는 시스템적인 접근법을 제공한다. 제안된 알고리즘은 다양한 화재 영상에서 성공적으로 불꽃을 감지하였고 다른 알고리즘에 비해 더 좋은 성능을 보여주고 있다.

Keywords

References

  1. B.C. Ko, K-H Cheong and J-Y Nam, "Fire detection based on vision sensor and support vector machines," Fire Safety J., vol.44, pp.322-329, Apr. 2009. https://doi.org/10.1016/j.firesaf.2008.07.006
  2. S. Y. Foo, "A fuzzy logic approach to fire detection in aircraft dry bays and engine compartments," IEEE Trans. Industrial Electronics, vol.47, no.5, pp.1161-1171, Oct. 2000. https://doi.org/10.1109/41.873226
  3. B.U. Toreyin, Y. Dedeoglu. U. Gudukbay and A. E. Cetin, "Computer vision based method for real-time fire and flame detection," Patt. Recog. L., vol.27, pp.49-58, Jan. 2006. https://doi.org/10.1016/j.patrec.2005.06.015
  4. C-C Ho, "Machine vision-based real-time early flame and smoke detection," Meas. Sci. Technol., vol.20, no.4, pp.1-13, Mar. 2009.
  5. T. Chen, P. Wu and Y. Chiou, "An early firedetection method based on image processing," International Conference on Image Processing, pp.1707-1710, Oct. 2004.
  6. D. Han and B. Lee, "Development of Early Tunnel Fire Detection Algorithm Using the Image Processing," International Sympowium on Visual Computing, vol.4292. pp.39-48, Nov. 2006.
  7. T. Celik, H. Ozkaramanh and H. Demirel "Fire pixel classification using Fuzzy Logic and Statistical Color model," IEEE International Conference on Acoustics, Speech, and Signal Processing, vol.1, pp.1205-1208, Apr. 2007.
  8. T. Horprasert, D. Harwood and L.S. Davis, "A Statistical Approach for Real-time Robust Background Subtraction and Shadow Detection," Proc. IEEE Work shop on Frame Rate, pp.1-19. 1999.
  9. H-J Hwang, B.C. Ko, "Fire-Flame Detection using Fuzzy Logic," Journal of KIPS, vol.16-B, no.6, pp.463-470, Dec. 2009. (in Korean) https://doi.org/10.3745/KIPSTB.2009.16B.6.463
  10. M. Doostfatemeh and S. C. Kremer, "New directions in fuzzy automata," Int. J. of Approximate Reasoning, vol.38, no.2, pp.175-214, Feb. 2005. https://doi.org/10.1016/j.ijar.2004.08.001
  11. J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages, and Computation, 2nd Ed., pp.60-65, ACM, NewYork, 2001.
  12. F. Yuan, "A fast accumulative motion orientation model based on integral image for video smoke detection," Pattern Recognition Letters, vol.29, no,7, pp.925-932, May. 2008. https://doi.org/10.1016/j.patrec.2008.01.013
  13. I-G Lee, B.C. Ko, J-Y Nam, "Fire-Smoke Detection Based on Video using Dynamic Bayesian Networks," Journal of KICS, vol.34, no.4, pp.1-9, Apr. 2009. (in Korean)
  14. F. Lin and H. Ying, "Modeling and control of fuzzy discrete event systems," IEEE Trans. On SMC-B, vol.32, pp.408-415, Aug. 2002.