Enhancement of Saccharification Yield of Ulva pertusa kjellman for Ethanol Production through High Temperature Liquefaction Process

고압액화공정을 이용한 구멍갈파래의 발효용 알코올 당화수율 증진

  • Han, Jae-Gun (School of Biotechnology and Bioengineering, Kangwon Natl. Univ.) ;
  • Oh, Sung-Ho (School of Biotechnology and Bioengineering, Kangwon Natl. Univ.) ;
  • Choi, Woon-Yong (School of Biotechnology and Bioengineering, Kangwon Natl. Univ.) ;
  • Kwon, Jung-Woong (Department of Applied BioSciences, Konkuk University) ;
  • Seo, Hyeon-Beom (Department of Food and Biotechnology, Chungju University) ;
  • Jeong, Kyung-Hwan (Department of Food and Biotechnology, Chungju University) ;
  • Kang, Do-Hyung (Korea Ocean Research & Development Institute) ;
  • Lee, Hyeon-Yong (School of Biotechnology and Bioengineering, Kangwon Natl. Univ.)
  • 한재건 (강원대학교 바이오산업공학부) ;
  • 오성호 (강원대학교 바이오산업공학부) ;
  • 최운용 (강원대학교 바이오산업공학부) ;
  • 권정웅 (건국대학교 응용생물과학과) ;
  • 서현범 (충주대학교 식품생명공학부) ;
  • 정경환 (충주대학교 식품생명공학부) ;
  • 강도형 (한국해양연구원) ;
  • 이현용 (강원대학교 바이오산업공학부)
  • Received : 2010.04.27
  • Accepted : 2010.08.24
  • Published : 2010.08.31

Abstract

Green alga, Ulva pertusa kjelmann has been known to be one of the largest pollutants in Korea. Therefore, the efficient pretreatment processes have been required to improve the yields of fermentable sugar. The optimal pretreatment conditions were determined to be $195^{\circ}C$ for 15 min. The sugar yield of glucose and xylose were estimated as 20.5%, and 5.0% respectively, based on theoretical yields. However solid residues were estimated enzymatic digestibility of 90-95% with cellulase loading of 15 FPU/g glucan. This process was proved to generate the low concentration of Hydroxy-Methyl-Furfural (51 ppm), which resulted in ethanol production with 95% of the maximum conversion yield from glucose in the culture of Saccharomyces cerevisiae (ATCC, 24858). This study showed that Ulva pertusa kjellmann can be used as a bioetahnol resource using the high temperature liquefaction process.

Keywords

References

  1. Wright, L. (2006) Worldwide commercial development of bioenergy with a focus on energy crop-based project. Biomass Bioenerg. 30: 706-714. https://doi.org/10.1016/j.biombioe.2005.08.008
  2. Saulnier, L., C. Marot, E. Chanliaud, and J. F. Thibault (1995) Cell wall polysaccharide interaction in maize bran. Carbohydr. Polym. 26: 279-287. https://doi.org/10.1016/0144-8617(95)00020-8
  3. Kloareg, B. and R. S. Quatrano (1988) Structure of the cell walls of marine algae and ecophysical function of the matrix polysaccharides. Oceanogr. Mar. Biol. Ann. Rev. 26: 259-315.
  4. Davis, T. A., B. Volesky, and A. Mucci (2003) A review of the bio-chemistry of heavy metal biosorption by brown algae. Water Res. 37: 4311-4330. https://doi.org/10.1016/S0043-1354(03)00293-8
  5. Yu, Q. and P. Kaewsarn (1999) A model for pH dependent equilibrium of heavy metal biosorption. Korean J. Chem. Eng. 16: 753-757. https://doi.org/10.1007/BF02698347
  6. Lee, M. G., J. H. Lim, and S. K. Kam (2002) Biosorption characteristics in the mixed heavy metal solution by biosorbents of marine brown algae. Korean J. Chem. Eng. 19: 277-284. https://doi.org/10.1007/BF02698414
  7. Munoz, R. and B. Guieysse (2006) Algal-bacterial processes for the treatment of hazardous contaminant: A review. Water Res. 40: 2799-2815. https://doi.org/10.1016/j.watres.2006.06.011
  8. Sugano, Y., H. Kodama, I. Terada, Y. Yamajakiand, and M. Noma (1994) Purification and characterization of a novel enzyme, $\alpha-neoagararooligosaccharide$ hydrolase, from a marine bacterium, Vibrio sp. strain JT0107. J. Bacteriol. 176: 6812-6818. https://doi.org/10.1128/jb.176.22.6812-6818.1994
  9. Fang, Z., T. Sato, R. L. Smith-Jr, H. Inomata, K. Arai, and J. A. Kozimski (2008) Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresour. Technol. 99: 3424-3430. https://doi.org/10.1016/j.biortech.2007.08.008
  10. Koo, S. Y., K. H. Cha, and D. U. Lee (2007) Effects of high hydrostatic pressure of foods and biological system. Food Sci. lnd. 40: 23-30.
  11. Zhang, S., J. Zhu, and C. Wang (2004) Novel high pressure extraction technology. International Journal of Pharmaceutics 278: 471-474. https://doi.org/10.1016/j.ijpharm.2004.02.029
  12. Gray, K. A., L. Zhao, and M. Emphage (2006) Bioethanol. Curr. Opin. Chem. Biol. 10: 1-6. https://doi.org/10.1016/j.cbpa.2006.01.015
  13. Mosier, N., R. Hendrickson, M. Ho, M. Sedlak, and M. R. Ladisch (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour. Technol. 96: 1986-1993. https://doi.org/10.1016/j.biortech.2005.01.013
  14. Linde, M., M. Galbe, and G. Zacchi (2008) Bioethanol production from non-starch carbohydrate residues in process stream from a dry-mill ethanol plant. Bioresour. Technol. 99: 6505-6511. https://doi.org/10.1016/j.biortech.2007.11.032
  15. Nathan, M., W. Charles, D. Bruce, E. Richard, Y. Y. Lee, H. Mark, and L. Michael (2005) Features of promising thechnologies for pretreatments of lignocellulosic biomass. Bioresour. Technol. 96: 673-686. https://doi.org/10.1016/j.biortech.2004.06.025
  16. Araque, E., C. Parra, J. Freer, D. Contreras, J. Rodriguez, R. Mendonc, and J. Benza (2008) Evaluation of organosolv pretreatment for the conversion of Pinus radita d. don to ethanol. Enzyme Microb. Technol. 43: 157-162. https://doi.org/10.1016/j.enzmictec.2007.11.011
  17. Chaogang, L. and C. E. Wyman (2005) Partial flow of compressed-hot water through corn stover to enhance hemicellulose sugar recovery and enzymatic digestibility of cellulose. Bioresour. Technol. 96: 1978-1985. https://doi.org/10.1016/j.biortech.2005.01.012
  18. Lishi, Y., Z. Hongman, C. Jingwen, L. Zengxiang, J. Qiang, J. Honghua, and H. He (2008) Dilute sulfuric acid cycle spray flow-through pretreatment of corn stover for enhancement of sugar recovery. Bioresour. Technol. 100: 1803-1808.
  19. Choi, J. W., H. J. Lim, K. S. Han, H. Y. Kang, and D. H. Choi (2005) Characterization of degradation features and degradative product of poplar wood (populus alba ${\times}$ glandulosa) by flow type-supercritical water treatment. J. Kor. For. En. 24: 39-46.
  20. Todd, A. L. and E. W. Charles (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour. Technol. 96: 1967-1877. https://doi.org/10.1016/j.biortech.2005.01.011