DOI QR코드

DOI QR Code

Thermoelectric Properties of Rapid Solidified p-type Bi2Te3 Alloy Fabricated by Spark Plasma Sintering(SPS) Process

방전 플라즈마 소결법(SPS)으로 제조된 급속응고 p-type Bi2Te3 합금의 소결 특성

  • Moon, Chul-Dong (Dept. of Rare Metals, Korea Institute of Industrial Technology (KITECH)) ;
  • Hong, Soon-Jik (Division of Advanced Materials Engineering, Kongju National University) ;
  • Kim, Do-Hyang (Center for Non-crystalline Materials / Dept. of Advanced Materials Eng., Yonsei University) ;
  • Kim, Taek-Soo (Dept. of Rare Metals, Korea Institute of Industrial Technology (KITECH))
  • 문철동 (한국생산기술연구원 희소금속산업기술센터) ;
  • 홍순직 (공주대학교 신소재공학부) ;
  • 김도향 (연세대학교 준결정연구단) ;
  • 김택수 (한국생산기술연구원 희소금속산업기술센터)
  • Received : 2010.11.05
  • Accepted : 2010.12.15
  • Published : 2010.12.28

Abstract

The p-type thermoelectric compounds of $Bi_2Te_3$ based doped with 3wt% Te were fabricated by a combination of rapid solidification and spark plasma sintering (SPS) process. The effect of holding time during spark plasma sintering (SPS) on the microstructure and thermoelectric properties were investigated using scanning electron microscope (SEM), X-ray diffraction (XRD) and thermoelectric properties. The powders as solidified consisted of homogeneous thermoelectric phases. The thermoelectric figure of merit measured to be maximum ($3.41{\times}10^{-3}/K$) at the SPS temperature of $430^{\circ}C$.

Keywords

References

  1. I.-S. Kim, C.-W. Hwang and D.-K. Paik: J. of the Korean Inst. of Met. & Mater., 36 (1998) 597 (Korean).
  2. S. H. Shim, D. W. Lee, J. H. Chae, J.-I. Matsushita and K. B. Shim: J. Korean Crystal Growth and Crystal Technology, 15 (2005) 75.
  3. D.-M. Lee, S.-H. Lee, J.-H. Seo and C.-H. Lee: J. Korean Inst. of Met. & Mater., 35 (1997) 216 (Korean).
  4. S.-E. Nam, J. S. Choi, D.-B. Hyun and T. S. Oh: J. Korean Inst. of Met. & Mater., 33 (1995) 905 (Korean).
  5. N. Keawprak, Z. M. Sun, H. Hashimoto and M. W. Barsoum: J. Alloys & Comp., 397 (2005) 236. https://doi.org/10.1016/j.jallcom.2004.11.073
  6. S.-J. Hong, S.-H. Lee and B. S. Chun: Mater. Sci. & Eng. B, 98 (2003) 232. https://doi.org/10.1016/S0921-5107(03)00042-4
  7. S.-J. Hong, Y.-S. Lee, J.-W. Byeon and B.-S. Chun: J. Alloys & Comp., 414 (2006) 146. https://doi.org/10.1016/j.jallcom.2005.03.115
  8. W.-S. Cho, S.-W. Choi, K.S. Parkr: Mater. Sci. & Eng. B, 68 (1999) 116. https://doi.org/10.1016/S0921-5107(99)00477-8
  9. T.-S. Kim, B. S. Chun, J. K. Lee and H. G. Jung: J. Alloys & Comp., 434 (2007) 710. https://doi.org/10.1016/j.jallcom.2006.08.251
  10. L. D. Zhao, B.-P. Zhang, J.-F. Li, H. L. Zhang and W.S. Liu: Solid State Sciences, 10 (2008) 651. https://doi.org/10.1016/j.solidstatesciences.2007.10.022
  11. J.-H. Seo, M.-C. Ju and C.-H. Lee: J. Korean Inst. of Met. & Mater., 36 (1998) 1318 (Korean).
  12. D.-B. Hyun, T. S. Oh, J.-S. Hwang and J.-D. Shim: Scripta mater., 44 (2001) 455. https://doi.org/10.1016/S1359-6462(00)00631-X
  13. T.-S. Kim, B.-S. Chun: J. Alloys & Comp., 437 (2007) 225. https://doi.org/10.1016/j.jallcom.2006.07.090
  14. J. M. Schultz, J. P. McHugh and W. A. Tiller: J. Appl. Phys., 33 (1962) 2443. https://doi.org/10.1063/1.1728990