DOI QR코드

DOI QR Code

Synthesis and Magnetic Properties of Zn, Co and Ni Substituted Manganese Ferrite Powders by Sol-gel Method

  • Received : 2010.08.25
  • Accepted : 2010.10.14
  • Published : 2010.12.31

Abstract

The Zn, Co and Ni substituted manganese ferrite powders, $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$, were fabricated by the solgel method, and their crystallographic and magnetic properties were studied. The Zn substituted manganese ferrite, $Zn_{0.2}Mn_{0.8}Fe_2O_4$, had a single spinel structure above $400^{\circ}C$, and the size of the particles of the ferrite powder increased when the annealing temperature was increased. Above $500^{\circ}C$, all the $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$ ferrite had a single spinel structure and the lattice constants decreased with an increasing substitution of Zn, Co, and Ni in $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$. The Mossbauer spectra of $Mn_{1-x}Zn_xFe_2O_4$ (0.0$\leq$x$\leq$0.4) could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. For x = 0.6 and 0.8 they showed two Zeeman sextets and a single quadrupole doublet, which indicated they were ferrimagnetic and paramagnetic. And for x = 1.0 spectrum showed a doublet due to a paramagnetic phase. For the Co and Ni substituted manganese ferrite powders, all the Mossbauer spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. The variation of the Mossbauer parameters are also discussed with substituted Zn, Co and Ni ions. The increment of the saturation magnetization up to x = 0.6 in $Mn_{1-x}Co_xFe_2O_4$ could be qualitatively explained using the site distribution and the spin magnetic moment of substituted ions. The saturation magnetization and coercivity of the $Mn_{1-x}$(Zn, Co, Ni)$_xFe_2O_4$ (x = 0.4) ferrite powders were also compared with pure $MnFe_2O_4$.

Keywords

References

  1. A. Goldman, Modern Ferrite Technology, Van Nostrand Reinhold, New York (1990) p.217.
  2. A. S. Albaguergye, J. D. Ardisson, and W. A. A. Macedo, J. Appl. Phys. 87, 4352 (2000). https://doi.org/10.1063/1.373077
  3. J. M. Hastings, L. M. Corliss., Phys. Rev. 104, 328 (1965).
  4. J. G. Lee, J. Y. Park, and C. S. Kim. J. Mater. Sci. 53, 3965 (1998).
  5. V. K. Sankaranarayana, Q. A. Pankhurst, D. P. E. Dickson, C. E. Johson, J. Magn. Magn. Mater. 125, 199 (1993). https://doi.org/10.1016/0304-8853(93)90838-S
  6. K. G. Brooks and V. R. W. Amarakoon, J. Am. Ceram. Soc. 74, 81 (1991).
  7. K. Oda, T. Yoshio, K. Hirata, K. O. Oka, and K. Takabashi, J. Jpn. Soc. Powder Metal. 29, 170 (1982). https://doi.org/10.2497/jjspm.29.170
  8. F. Svegi, B. Oral, M. G. Hutchius, and K. Katcher, J. Electrochem. Soc. 143, 1532 (1996). https://doi.org/10.1149/1.1836675
  9. M. E. Baydi, S. K. Tiwari, R. N. Singh, J. I. Rehspinger, P. Chartier, J. F. Koenig, and G. Pollerat, J. Solid State Chem. 116, 157 (1995). https://doi.org/10.1006/jssc.1995.1197
  10. B. D. Cullity, Elements of X-Ray Diffraction, Addision-Wesley, Reading (1978) p.102.
  11. W. H. Kwon, Ph.D. Thesis, Konkuk University (2010) p.98.
  12. M. Z. Schmalzrifd. J. Phys. Chem. 28, 203 (1961).
  13. R. K. Datta and B. Roy, J. Amer. Coram. Soc. 50, 578 (1967). https://doi.org/10.1111/j.1151-2916.1967.tb15002.x
  14. N. Yamamoto, S. Kawano, N. Achwa, M. Kiyama, and T. Takada, Jap. J. Appl. Phys. 12, 1830 (1973). https://doi.org/10.1143/JJAP.12.1830
  15. A. Meenasmsrndaram, N. Gunasekaran, and V. Sninivasan, Phys. Stat. Sol. (a) 69, K45 (1982).
  16. K. J. Kim, H. K. Kim, Y. R. Park, and J. Y. Park, J. Kor. Mag. Soc. 16, 23 (2006). https://doi.org/10.4283/JKMS.2006.16.1.023

Cited by

  1. Structural and magnetic properties of nanoparticle Mn-Zn-Ni ferrite powders grown by using a sol-gel method vol.61, pp.11, 2012, https://doi.org/10.3938/jkps.61.1812
  2. Crystallographic and Magnetic Properties of Nickel Substituted Manganese Ferrites Synthesized by Sol-gel Method vol.18, pp.1, 2013, https://doi.org/10.4283/JMAG.2013.18.1.021
  3. Nickel Substitution Effects on Nano-sized Co, Mn and MnZn Ferrites Synthesized by Sol-gel Method vol.21, pp.1, 2016, https://doi.org/10.4283/JMAG.2016.21.1.040
  4. Crystallographic and Magnetic Properties of Co, Zn, Ni-Zn Substituted Nano-size Manganese Ferrites Synthesized by Sol-gel Method vol.21, pp.3, 2016, https://doi.org/10.4283/JMAG.2016.21.3.308
  5. Synthesis of α-Fe2O3 and Fe-Mn Oxide Foams with Highly Tunable Magnetic Properties by the Replication Method from Polyurethane Templates vol.11, pp.2, 2018, https://doi.org/10.3390/ma11020280