DOI QR코드

DOI QR Code

Prototype Milli Gauss Meter Using Giant Magnetoimpedance Effect in Self Biased Amorphous Ribbon

  • Kollu, Pratap (Department of Materials Science and Engineering, Chungnam National University) ;
  • Yoon, Seok-Soo (Department of Physics, Andong National University) ;
  • Kim, Gun-Woo (Department of Materials Science and Engineering, Chungnam National University) ;
  • Angani, C.S. (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Cheol-Gi (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2010.09.06
  • Accepted : 2010.09.29
  • Published : 2010.12.31

Abstract

In our present work, we developed a GMI (giant magnetoimpedance) sensor system to detect magnetic fields in the milli gauss range based on the asymmetric magnetoimpedance (AGMI) effect in Co-based amorphous ribbon with self bias field produced by field-annealing in open air. The system comprises magnetoimpedance sensor probe, signal conditioning circuits, A/D converter, USB controller, notebook computer, and program for measurement and display. Sensor probe was constructed by wire-bonding the cobalt based amorphous ribbon with dimensions $10\;mm\;{\times}\;1\;mm\;{\times}\;20\;{\mu}m$ on a printed circuit board. Negative feedback was used to remove the hysteresis and temperature dependence and to increase the linearity of the system. Sensitivity of the milli gauss meter was 0.3 V/Oe and the magnetic field resolution and environmental noise level were less than 0.01 Oe and 2 mOe, respectively, in an unshielded room.

Keywords

References

  1. T. Morikawa, Y. Nishibe, H. Yamadera, Y. Nanomura, M. Takeuchi, and Y. Taga, IEEE Trans. Magn. 32, 5 (1996). https://doi.org/10.1109/TMAG.1996.486335
  2. P. Kollu, L. Jin, K. W. Kim, S. S. Yoon, and C. G. Kim, Appl. Phys. A 90, 533 (2008). https://doi.org/10.1007/s00339-007-4317-x
  3. S. S. Yoon, P. Kollu, K. W. Kim, Y. Cha, D. Y. Kim, and C. G. Kim, IEEE Trans. Magn. 45, 2727 (2009). https://doi.org/10.1109/TMAG.2009.2020538
  4. P. Delooze P. Delooze, L. V. Panina, D. J. Mapps, K. Ueno, and H. Sano, IEEE Trans. Magn. 39, 3307 (2003). https://doi.org/10.1109/TMAG.2003.816755
  5. C. G. Kim, K. J. Jang, H. C. Kim, and S. S. Yoon, J. Appl. Phys. 85, 5447 (1999). https://doi.org/10.1063/1.369971
  6. K. Mohri, T. Uchiyama, and L. V. Panina, Sens Actuators A 59, 1 (1997). https://doi.org/10.1016/S0924-4247(97)80141-0
  7. T. Kanno, K. Mohri, T. Yagi, T. Uchiyama, and L. P. Shen, IEEE Trans. Magn. 22, 3358 (1997).
  8. H. Hauser, R. Steindl, C. Hausleitner, A. Pohl, and J. Nicolics, IEEE Trans. Instrum. Meas. 49, 648 (2000). https://doi.org/10.1109/19.850409
  9. G. P. Jian and T. G. Qing, Journal of Beijing Institute of Machinery 25, 1 (2010). http://d.wanfangdata.com.cn/Periodical_bjjxgyxyxb201001013.aspx
  10. S. Yabukami, H. Mawatari, N. Horikoshi, Y. Murayama, T. Ozawa, and K. Ishiyama, J. Magn. Magn. Mater. 290, 1318 (2005). https://doi.org/10.1016/j.jmmm.2004.11.427
  11. http://www.aichi-mi.com
  12. C. G. Kim, K. J. Jang, D. Y. Kim, and S. S. Yoon, Appl. Phys. Lett. 75, 2114 (1999). https://doi.org/10.1063/1.124934
  13. http://www.smekorea.com

Cited by

  1. Magneto-impedance and Magnetic Relaxation in Electrodeposited Cu/Ni80Fe20 Core/Shell Composite Wire vol.25, pp.1, 2015, https://doi.org/10.4283/JKMS.2015.25.1.010
  2. Diagonal Magneto-impedance in Cu/Ni80Fe20 Core-Shell Composite Wire vol.25, pp.4, 2015, https://doi.org/10.4283/JKMS.2015.25.4.129