Lithium-Ion Batteries for Plug-In Hybrid Electric Vehicle

플러그인 하이브리드자동차용 리튬이온 이차전지

  • Cho, Mann (Senior Research Fellow, ReSEAT Program, Korea Institute of Science and Technology Information) ;
  • Son, Young-Mok (Senior Research Fellow, ReSEAT Program, Korea Institute of Science and Technology Information) ;
  • Nah, Do-Baek (Pricipal Researcher, Korea Institute of Science and Technology Information) ;
  • Kil, Sang-Cheol (Pricipal Researcher, Korea Institute of Science and Technology Information) ;
  • Kim, Sang-Woo (Pricipal Researcher, Korea Institute of Science and Technology Information)
  • 조만 (한국과학기술정보연구원 ReSEAT프로그램) ;
  • 손영목 (한국과학기술정보연구원 ReSEAT프로그램) ;
  • 나도백 (한국과학기술정보연구원) ;
  • 길상철 (한국과학기술정보연구원) ;
  • 김상우 (한국과학기술정보연구원)
  • Received : 2010.03.18
  • Accepted : 2010.06.25
  • Published : 2010.06.30

Abstract

Plug-in hybrid electric vehicles(PHEVs) are gaining attention over the world due to their abilities to reduce $CO_2$ emission and gasoline/diesel consumption by using electricity from the grid. Lithium ion battery is one of the most suitable candidates as energy storage device for PHEVs applications up to 2030. This review focuses on the present status of lithium ion battery technology, then on comparison of the performance characteristics of the promising cathode materials.

플러그인 하이브리드자동차의 개발이 활발하다. 배전망으로부터의 전력을 수송에 사용함으로써 온실효과가스 배출과 화석연료소비를 저감시킨다. 향후 2030년까지의 플러그인 하이브리드자동차용 축전장치로는 리튬이온 이차전지가 가장 현실적인 기술이다. 리튬이온 이차전지 기술의 현황을 리뷰하고 장차 실용화될 것으로 전망되는 양극소재의 특성을 비교한다.

Keywords

References

  1. A. Pesaran, et al., "Battery Requirements for Plug-In Hybrid Electric Hybrid Vehicles-Analysis and Rationale", NREL/CP_540_42240, July 2009 (www.nrel.gov/docs/fy09osti/422240.pdf).
  2. "08 NEDO 차세대 자동차용 축전지 기술개발 roadmap", 2008 (http://app3.infoc.nedo.go.jp/informations/koubo/ other/FA/nedoothernews.2009-05-29.2374124845/30ed30fc30de30c389e38aacP_516c958b7248518d65398a027248_.pdf).
  3. K. Snyder, "United State Advanced Battery Consortium", DOE Merit Review, May 19, 2009 (http://www1.eere.energy.gov/vehiclesandfuels/pdfs/merit_review_2009/energy_storage/es_03_snyder.pdf).
  4. B. Scrosati and j. Garche, J. Power Sources 195(2010) 2419. https://doi.org/10.1016/j.jpowsour.2009.11.048
  5. G. Derrien, J. Hassoun, S. Panero, B. Scrosati, Adv. Mater. 19(2007) 2336. https://doi.org/10.1002/adma.200700748
  6. G. Derrien, J. Hassoun, S. Panero, B. Scrosati, Adv. Mater. 20(2008) 3169. https://doi.org/10.1002/adma.200702928
  7. H. Kim, B. Han, J. Choo, J. Cho, Angew. Chem. Ind. Ed. 47(2008) 1. https://doi.org/10.1002/anie.200790254
  8. A. Ohzuko, N. Ueda, N. Yamamoto, J. Electrochem. Soc. 142(1995) 1431. https://doi.org/10.1149/1.2048592
  9. P. Kubiak, J. Geserick, N. Husing, M. Wohlfahrt-Mehrens, J. Power Sources 175(2008) 510. https://doi.org/10.1016/j.jpowsour.2007.09.044
  10. T. Yamamoto, T. Hara, K. Segawa, K. Honda, H. Akashi, J. Power Sources 174(2007) 1036. https://doi.org/10.1016/j.jpowsour.2007.06.212
  11. X. Shi, C. Wang, X. Ma, J. Sun, Mater. Chem. Phys. 113(2009) 780-783. https://doi.org/10.1016/j.matchemphys.2008.08.015
  12. D.G. Lee, R.K. Gupta, Y.S. Cho, K.T. Hwang, J. Appl. Electrochem. 39(2009) 671-679. https://doi.org/10.1007/s10800-008-9707-z
  13. D. Li, Z. Peng, H. Ren, W. Guo, Y. Zhou, Mater. Chem. Phys. 107(2008) 171-176. https://doi.org/10.1016/j.matchemphys.2007.06.069
  14. R. Baskaran, N. Kuwata, O. Kamishima, J. Kawamura, S. Selvasekarapandian, Solid State Ionics 180(2009) 636-643. https://doi.org/10.1016/j.ssi.2008.11.012
  15. K. Sakamoto, M. Hirayama, N. Sonoyama, D. Mori, A. Yamada, K. Tamura, J. Mizuki, R. Kanno, Chem. Mater. 21(13) (2009) 2632-2640. https://doi.org/10.1021/cm8033559
  16. S.-H. Kang, M.M. Thackeray, Electrochem. Commun. 11(2009) 748-.751. https://doi.org/10.1016/j.elecom.2009.01.025
  17. T.A. Arunkumar, E. Alvarez, A. Manthiram, J. Mater. Chem. 18(2008) 190-198. https://doi.org/10.1039/b713326j
  18. S. Sivaprakash, S.B. Majumder, R.S. Katiyar, J. Electrochem. Soc. 156(4) (2009) A328-A333. https://doi.org/10.1149/1.3078401
  19. M. M. Thackeray, S.-H. Kang, C.S. Johnson, J.T. Vaughey, R. Benedek, S.A. Hackney, J. Mater. Chem. 17(2007) 4012-4016.
  20. C. S. Johnson, N. Li, C. Lefief, J.T. Vaughey, M.M. Thackeray, Chem. Mater. 20(19) (2008) 6095-6106. https://doi.org/10.1021/cm801245r
  21. G.-Y. Kim, S.-B. Yi, Y.J. Park, H.-G. Kim, Mater. Res. Bull. 43(2008) 3543-3552. https://doi.org/10.1016/j.materresbull.2008.01.011
  22. X.-J. Guo, Y.-X. Li, M. Zheng, J.-M. Zheng, J. Li, Z.-L. Gong, Y. Yang, J. Power Sources 184(2008) 414-419. https://doi.org/10.1016/j.jpowsour.2008.04.013
  23. S.-H. Kang, M. M. Thackeray, J. Electrochem. Soc. 155(4) (2008) A269-A275. https://doi.org/10.1149/1.2834904
  24. J. Gao, A. Manthiram, J. Power Sources 191(2009) 644-647. https://doi.org/10.1016/j.jpowsour.2009.02.005
  25. J.-H. Lim, H. Bang, K.-S. Lee, K. Amine, Y.-K. Sun, J. Power Sources 189(2009) 571-575. https://doi.org/10.1016/j.jpowsour.2008.10.035
  26. K.-W. Nam, W.-S. Yoon, H. Shin, K.Y. Chung, S. Choi, X.-Q. Yang, J. Power Sources 192(2009) 652.659. https://doi.org/10.1016/j.jpowsour.2009.02.088
  27. Z. Chang, Z. Chen, F. Wu, H. Tang, X.Z. Yuan, H. Wang, Electrochem. Solid-State Lett. 11(12) (2008) A229-A232. https://doi.org/10.1149/1.2990223
  28. Z. Chang, Z. Chen, F. Wu, H. Tang, Z. Zhu, X.Z. Yuan, H. Wang, Solid State Ionics 179(2008) 2274-2277. https://doi.org/10.1016/j.ssi.2008.08.011
  29. Y. k. Sun, et al,, Nature Materials, Vol 8, 320-324, April 2009. https://doi.org/10.1038/nmat2418
  30. M. Tabuchi, et al, "Development of Cobalt-free Cathode Materials for Lithium Ion Secondary Batteries", 50th Battery Symposium in Japan(Nov. 30-Dec. 2, Kyoto Japan). http://www.aist.go.jp/aist_e/latest_research/2009/20090907/20090907.html.
  31. K. Amine, et al., J. Am. Ceram. Soc. 82(12) (1999) 3347-3354.
  32. T. Matsushima, J. Power Sources 189(2009) 847-854. https://doi.org/10.1016/j.jpowsour.2008.08.023
  33. B. Deng, H. Nakamura, M. Yoshio, Capacity fading with oxygen loss for manganese spinels upon cycling at elevated temperatures, J. Power Sources 180(2008) 864-868. https://doi.org/10.1016/j.jpowsour.2008.02.071
  34. Y. Liu, X. Li, H. Guo, Z. Wang, Q. Hu, W. Peng, Y. Yang, J. Power Sources 189(2009) 721-725. https://doi.org/10.1016/j.jpowsour.2008.08.044
  35. T. Doi, M. Inaba, H. Tsuchiya, S.-K. Jeong, Y. Iriyama, T. Abe, Z. Ogumi, J. Power Sources 180(2008) 539-545. https://doi.org/10.1016/j.jpowsour.2008.02.054
  36. Yu.G. Mateyshina, U. Lafont, N.F. Uvarov, E.M. Kelder, Russ. J. Electrochem. 45(5) (2009) 602-605. http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/2008_energy_storage.pdf.
  37. S. Patoux, L. Daniel, C. Bourbon, H. Lignier, C. Pagano, F. Le Cras, S. Jouanneau, S. Martinet, J. Power Sources 189(2009) 344-352. https://doi.org/10.1016/j.jpowsour.2008.08.043
  38. N.-E. Sung, Y.-K. Sun, S.-K. Kim, M.-S. Jang, J. Electrochem. Soc. 155(11) (2008) A845-A850. https://doi.org/10.1149/1.2976351
  39. M.M. Thackeray, J. Am. Ceram. Soc. 82(12) (1999) 3347-3354.
  40. K.-S. Lee, S.-T. Myung, H. Bang, K. Amine, D.-W. Kim, Y.-K. Sun, J. Power Sources 189(2009) 494-498. https://doi.org/10.1016/j.jpowsour.2008.11.062
  41. D.-Q. Liu, X.-Q. Liu, Z.-Z. He, Mater. Chem. Phys. 105(2007) 362-366. https://doi.org/10.1016/j.matchemphys.2007.04.073
  42. J. Liu, A. Manthiram, J. Electrochem. Soc. 156(1) (2009) A66-A72. https://doi.org/10.1149/1.3028318
  43. R. Singhal, M.S. Tomar, J.G. Burgo, R.S. Katiyar, J. Power Sources 183(2008) 334-338. https://doi.org/10.1016/j.jpowsour.2008.05.014
  44. S. B. Park, H.C. Shin, W.-G. Lee, W.I. Cho, H. Jang, J. Power Sources 180(2008) 597-601. https://doi.org/10.1016/j.jpowsour.2008.01.051
  45. S. Lim, J. Cho, Electrochem. Commun. 10(2008) 1478-1481. https://doi.org/10.1016/j.elecom.2008.07.028
  46. T. Doi, J.-I. Kageura, S. Okada, J.I. Yamaki, J. Power Sources 185(2008) 473-479. https://doi.org/10.1016/j.jpowsour.2008.07.013
  47. J. M. Amarilla, K. Petrov, F. Pico, G. Avdeev, J.M. Rojo, R.M. Rojas, J. Power Sources 191(2009) 591-600. https://doi.org/10.1016/j.jpowsour.2009.02.026
  48. B. Zhang, G. Chen, Y. Liang, P. Xu, Solid State Ionics 180(2009) 398-404. https://doi.org/10.1016/j.ssi.2009.01.009
  49. L. Xiao, Y. Zhao, Y. Yang, Y. Cao, X. Ai, H. Yang, Electrochim. Acta 54(2008) 545-550. https://doi.org/10.1016/j.electacta.2008.07.037
  50. G. Du, Y. NuLi, J. Yang, J. Wang, Mater. Res. Bull. 43(2008) 3607-3613. https://doi.org/10.1016/j.materresbull.2008.02.025
  51. K. Matsumoto, T. Fukutsuka, T. Okumura, Y. Uchimoto, K. Amezawa, M. Inaba, A. Tasaka, J. Power Sources 189(2009) 599-601. https://doi.org/10.1016/j.jpowsour.2008.09.073
  52. S.H.Ju, Y.C.Kang, J. Power Sources 178(2008) 387-392. https://doi.org/10.1016/j.jpowsour.2007.11.112
  53. H.-L. Zhu, Z.-Y. Chen, S. Ji, V. Linkov, Solid State Ionics, 179(2008) 1788-1793. https://doi.org/10.1016/j.ssi.2008.01.058
  54. T.J. Patey, R. Buchel, M. Nakayama, P. Novak, Phys. Chem. Chem. Phys. 11(2009) 3756-3761. https://doi.org/10.1039/b821572n
  55. A. Manthiram, et al., "Advanced High-Energy Cathod Materials", Fy 2008 Progress Report for Energy Storage Research and Development, pp98-100, January 2009 (http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/2008_energy_storage.pdf).
  56. A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, S. Okada, J. Goodenough, J. Electrochem. Soc. 144(5) (1997) 1609-1613. https://doi.org/10.1149/1.1837649
  57. R. Dedryvere, M. Maccario, L. Croguennec, F. Le Cras, C. Delmas, D. Gonbeau, Chem. Mater. 20(22) (2008) 7164-7170. https://doi.org/10.1021/cm801995p
  58. W. Sigle, R. Amin, K. Weichert, P.A. van Aken, J. Maier, Electrochem. Solid-State Lett. 12(8) (2009) A151-A154. https://doi.org/10.1149/1.3131726
  59. Y.-D. Cho, G.T.-K. Fey, H.-M. Kao, J. Power Sources 189(2009) 256-262. https://doi.org/10.1016/j.jpowsour.2008.09.053
  60. S.W. Oh, H.J. Bang, S.-T. Myung, Y.C. Bae,.S.-M. Lee, Y.-K. Sun, J. Electrochem. Soc. 155(6) (2008) A414-A420. https://doi.org/10.1149/1.2898684
  61. S.W. Oh, S.-T. Myung, H.J. Bang, C.S. Yoon, K. Amine, Y.-K. Sun, Electrochem. Solid-State Lett. 12(9) (2009) A181-A185. https://doi.org/10.1149/1.3143901
  62. B. Kang and G. Ceder, Nature Vol 458, 12 March 2009, pp. 190-193. doi:10.1038/nature07853.
  63. S. Panero, D. Satolli, M. Salomon, B. Scrosati, Electrochem. Commun. 2 (2000)810. https://doi.org/10.1016/S1388-2481(00)00127-2
  64. P. Reale, S. Panero, B. Scrosati, J. Garche, M. Wohlfart- Meherens, M. Wachtler, J. Electrochem. Soc. 151(2004) 12.
  65. T. Ohzuku, K. Ariyoshi, S. Yamamoto, Y. Makimura, Chem. Lett. 12(2001) 1270.
  66. I. Belharouak, Y.-K. Sun, W. Lu, K. Amine, J. Electrochem. Soc. 154(2007) A1083. https://doi.org/10.1149/1.2783770
  67. S. P-Reale, B. Panero, Scrosati, J. Electrochem. Soc. 152(2005) A1949. https://doi.org/10.1149/1.2006509
  68. G. Armstrong, A.R. Armstrong, P.G. Bruce, P. Reale, B. Scrosati, Adv. Mater. 18(2006) 2597. https://doi.org/10.1002/adma.200601232
  69. J. Hassoun, S. Panero, P. Reale, B. Scrosati, Adv. Mater. (2009), doi:10.1002/adma.200900470.
  70. A. D. Pasquier, et al, Jouranl of Power Sources, 186, 505-514, 2009.
  71. T. Okumura, T. Fukutsuka, Y. Uchimoto, K. Amezawa, S. Kobayashi, J. Power Sources 189(2009) 471-475. https://doi.org/10.1016/j.jpowsour.2008.12.043
  72. S.B. Park, H.C. Shin, W.-G. Lee, W.I. Cho, H. Jang, J. Power Sources 180(2008) 597-601. https://doi.org/10.1016/j.jpowsour.2008.01.051