DOI QR코드

DOI QR Code

An NMR Study on the Phase Change of Lipid Membranes by an Antimicrobial Peptide, Protegrin-1

  • Kim, Chul (Department of Chemistry, Hannam University)
  • Published : 2010.02.20

Abstract

Membrane disruption by an antimicrobial peptide, protegrin-1 (PG-1), was investigated by measuring the $^2H$ solid-state nuclear magnetic resonance (SSNMR) spectra of 1-palmitoyl-$d_{31}$-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC_$d_{31}$) in the mixture of PG-1 and POPC_$d_{31}$ lipids deposited on thin cover-glass plates. The experimental line shapes of anisotropic $^2H$ SSNMR spectra measured at various peptide-to-lipid (P/L) ratios were simulated reasonably by assuming the mosaic spread of bilayers containing pore structures or the coexistence of the mosaic spread of bilayers and a fast-tumbling isotropic phase. Within a few days of incubation in the hydration chamber, the pores were formed by the peptide in the POPC_$d_{31}$ and POPC_$d_{31}$/cholesterol membranes. However, the formation of the pores was not clear in the POPC_$d_{31}$/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol (POPG) membrane. Over a hundred days after hydration, a rapidly rotating isotropic phase increased in the POPC_$d_{31}$ and the POPC_$d_{31}$/cholesterol membranes with the higher P/L ratios, but no isotropic phase appeared in the POPC_$d_{31}$/POPG membrane. Cholesterol added in the POPC bilayer acted as a stabilizer of the pore structure and suppressed the formation of a fast-tumbling isotropic phase.

Keywords

References

  1. Papagianni, M. Biotechnol. Adv. 2003, 21, 465. https://doi.org/10.1016/S0734-9750(03)00077-6
  2. Thomma, B. P.; Cammue, B. P.; Thevissen, K. Curr. Drug Targets: Infect. Disord. 2003, 3, 1.
  3. Rozek, T.; Bowie, J. H.; Wallace, J. C.; Tyler, M. J. Rapid Commun. Mass Spectrom. 2000, 14, 2002. https://doi.org/10.1002/1097-0231(20001115)14:21<2002::AID-RCM128>3.0.CO;2-3
  4. Cole, A. M. Protein Pept. Lett. 2005, 12, 41. https://doi.org/10.2174/0929866053406101
  5. Yount, N. Y.; Yeaman, M. R. Protein Pept. Lett. 2005, 12, 49. https://doi.org/10.2174/0929866053405959
  6. Rozek, T.; Wegener, K. L.; Bowie, J. H.; Olver, I. N.; Carver, J. A.; Wallace, J. C.; Tyler, M. J. Eur. J. Biochem. 2000, 267, 5330. https://doi.org/10.1046/j.1432-1327.2000.01536.x
  7. Toke, O. Biopolymers 2005, 80, 717. https://doi.org/10.1002/bip.20286
  8. Kim, C.; Spano, J.; Park, E. K.; Wi, S. Biochim. Biophys. Acta 2009, 1788, 1482. https://doi.org/10.1016/j.bbamem.2009.04.017
  9. He, K.; Ludtke, S. J.; Worcester, D. L.; Huang, H. W. Biophys. J. 1996, 70, 2659. https://doi.org/10.1016/S0006-3495(96)79835-1
  10. Mani, R.; Waring, A. J.; Lehrer, R. I.; Hong, M. Biochim. Biophys. Acta, Biomembr. 2005, 1716, 11. https://doi.org/10.1016/j.bbamem.2005.08.008
  11. Bai, Y.; Liu, S.; Jiang, P.; Zhou, L.; Li, J.; Tang, C.; Verma, C.; Mu, Y.; Beuerman, R. W.; Pervushin, K. Biochemistry 2009, 48, 7229. https://doi.org/10.1021/bi900670d
  12. Toke, O. Biopolymers 2005, 80, 717. https://doi.org/10.1002/bip.20286
  13. Yeaman, M. R.; Yount, N. Y. Pharmacol. Rev. 2003, 55, 27. https://doi.org/10.1124/pr.55.1.2
  14. Ludtke, S. J.; He, K.; Heller, W. T.; Harroun, T. A.; Yang, L.; Huang, H. W. Biochemistry 1996, 35, 13723. https://doi.org/10.1021/bi9620621
  15. Matsuzaki, K.; Murase, O.; Fujii, N.; Miyajima, K. Biochemistry 1996, 35, 11361. https://doi.org/10.1021/bi960016v
  16. Huang, H. W. Biochemistry 2000, 39, 8347. https://doi.org/10.1021/bi000946l
  17. Tang, Y. Q.; Yuan, J.; Osapay, G.; Osapay, K.; Tran, D.; Miller, C. J.; Ouellette, A. J.; Selsted, M. E. Science 1999, 286, 498. https://doi.org/10.1126/science.286.5439.498
  18. Buffy, J. J.; McCormick, M. J.; Wi, S.; Waring, A.; Lehrer, R. I.; Hong, M. Biochemistry 2004, 43, 9800. https://doi.org/10.1021/bi036243w
  19. Meyer, C. E.; Reusser, F. Experientia 1967, 23, 85. https://doi.org/10.1007/BF02135929
  20. Matsuzaki, K. Biochim. Biophys. Acta, Rev. Biomembr. 1998, 1376, 391. https://doi.org/10.1016/S0304-4157(98)00014-8
  21. Zasloff, M. Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 5449. https://doi.org/10.1073/pnas.84.15.5449
  22. Weiss, T. M.; Yang, L.; Ding, L.; Waring, A. J.; Lehrer, R. I.; Huang, H. W. Biochemistry 2002, 41, 10070. https://doi.org/10.1021/bi025853d
  23. Afonin, S.; Frey, A.; Bayerl, S.; Fischer, D.; Wadhwani, P.; Weinkauf, S.; Ulrich, A. S. ChemPhysChem 2006, 7, 2134. https://doi.org/10.1002/cphc.200600306
  24. Corzo, G.; Escoubas, P.; Villegas, E.; Barnham, K. J.; He, W.; Norton, R. S.; Nakajima, T. Biochem. J. 2001, 359, 35. https://doi.org/10.1042/0264-6021:3590035
  25. Nomura, K.; Corzo, G.; Nakajima, T.; Iwashita, T. Biophys. J. 2004, 87, 2497. https://doi.org/10.1529/biophysj.104.043513
  26. Prenner, E. J.; Lewis, R. N.; Jelokhani-Niaraki, M.; Hodges, R. S.; McElhaney, R. N. Biochim. Biophys. Acta 2001, 1510, 83. https://doi.org/10.1016/S0005-2736(00)00337-0
  27. Kokryakov, V. N.; Harwig, S. S.; Panyutich, E. A.; Shevchenko, A. A.; Aleshina, G. M.; Shamova, O. V.; Korneva, H. A.; Lehrer, R. I. FEBS Lett. 1993, 327, 231. https://doi.org/10.1016/0014-5793(93)80175-T
  28. Fahrner, R. L.; Dieckmann, T.; Harwig, S. S. L.; Lehrer, R. I.; Eisenberg, D.; Feigon, J. Chem. Biol. 1996, 3, 543. https://doi.org/10.1016/S1074-5521(96)90145-3
  29. Yang, L.; Weiss, T. M.; Lehrer, R. I.; Huang, H. W. Biophys. J. 2000, 79, 2002. https://doi.org/10.1016/S0006-3495(00)76448-4
  30. Mani, R.; Buffy, J. J.; Waring, A. J.; Lehrer, R. I.; Hong, M. Biochemistry 2004, 43, 13839. https://doi.org/10.1021/bi048650t
  31. Buffy, J. J.; Hong, T.; Yamaguchi, S.; Waring, A. J.; Lehrer, R. I.; Hong, M. Biophys. J. 2003, 85, 2363. https://doi.org/10.1016/S0006-3495(03)74660-8
  32. Buffy, J. J.; Waring, A. J.; Lehrer, R. I.; Hong, M. Biochemistry 2003, 42, 13725. https://doi.org/10.1021/bi035187w
  33. Yamaguchi, S.; Hong, T.; Waring, A.; Lehrer, R. I.; Hong, M. Biochemistry 2002, 41, 9852. https://doi.org/10.1021/bi0257991
  34. Wi, S.; Kim, C. J. Phys. Chem. B 2008, 112, 11402. https://doi.org/10.1021/jp801825k
  35. Jang, H.; Ma, B.; Woolf Thomas, B.; Nussinov, R. Biophys. J. 2006, 91, 2848. https://doi.org/10.1529/biophysj.106.084046
  36. Buffy, J. J.; Waring, A. J.; Hong, M. J. Am. Chem. Soc. 2005, 127, 4477. https://doi.org/10.1021/ja043621r
  37. Jang, H.; Ma, B.; Nussinov, R. BMC Struct. Biol. 2007, 7, 21 https://doi.org/10.1186/1472-6807-7-21
  38. Sayyed-Ahmad, A.; Kaznessis, Y. N. PLoS One 2009, 4, e4799. https://doi.org/10.1371/journal.pone.0004799
  39. Buffy, J. J.; McCormick, M. J.; Wi, S.; Waring, A.; Lehrer, R. I.; Hong, M. Biochemistry 2004, 43, 9800. https://doi.org/10.1021/bi036243w
  40. Strandberg, E.; Ulrich, A. S. Concepts Magn. Reson. A 2004, 23A, 89. https://doi.org/10.1002/cmr.a.20024
  41. Hallock, K. J.; Lee, D.-K.; Ramamoorthy, A. Biophys. J. 2003, 84, 3052. https://doi.org/10.1016/S0006-3495(03)70031-9
  42. Dolainsky, C.; Unger, M.; Bloom, M.; Bayerl, T. M. Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdisciplin. Top. 1995, 51, 4743.
  43. Auger, M.; Smith, I. C.; Jarrell, H. C. Biophys. J. 1991, 59, 31. https://doi.org/10.1016/S0006-3495(91)82195-6
  44. Singer, S. J.; Nicolson, G. L. Science 1972, 175, 720. https://doi.org/10.1126/science.175.4023.720

Cited by

  1. Liquid Crystal-based Imaging of Enzymatic Reactions at Aqueous-liquid Crystal Interfaces Decorated with Oligopeptide Amphiphiles vol.31, pp.5, 2010, https://doi.org/10.5012/bkcs.2010.31.5.1262
  2. 항균성 펩타이드와 혼합된 인지질 분자의 상 변화에 대한 고체 중수소 핵자기 공명 연구 vol.26, pp.1, 2010, https://doi.org/10.5806/ast.2013.26.1.061
  3. 항균성 펩타이드와 혼합된 인지질 분자의 상 변화에 있어서 수화 효과에 대한 고체 핵자기 공명 연구 vol.26, pp.6, 2010, https://doi.org/10.5806/ast.2013.26.6.395
  4. Effect of Cholesterol on the Phase Change of Lipid Membranes by Antimicrobial Peptides vol.35, pp.5, 2010, https://doi.org/10.5012/bkcs.2014.35.5.1317