DOI QR코드

DOI QR Code

Analysis of Reinforced Concrete Columns under Cyclic Loads Using a 2-Dimensional Lattice Model

2차원 래티스 모델에 의한 반복 하중을 받는 철근콘크리트 기둥의 해석

  • Kwon, Min-Ho (Dept. of Civil Eng., Engineering Research Institute, Gyeongsang Natl. University) ;
  • Ha, Gee-Joo (School of Architecture, Kyungil University) ;
  • Park, Tae-Gyu (Dept. of Civil Eng., Engineering Research Institute, Gyeongsang Natl. University) ;
  • Cho, Chang-Geun (School of Architecture, Chosun University)
  • Published : 2010.02.28

Abstract

An efficient design concept for earthquake loads, which is called performance based design, has been standard design in USA, Europe and Japan since those countries experienced severe earthquake damage at end of 90's. For general design, struttie model well predicts the strength of the disturbed region, however, it does not provide ductility information at the failure. Therefore, simple tools which are able to predict both the strength and the ductility of RC structures are in demand. 2D lattice model is introduced in this study as an analysis tool for the RC structures subject to earthquake. Experimental correlation studies indicate the 2D lattice model quite well predict the strength as well as the ductility of RC structures.

미국, 유럽 그리고 일본에서는 90년대 말에 큰 지진을 경험하면서부터 지진에 대한 성능 설계 개념이 설계 기준에 포함되기 시작하였다. 일반적으로 스트럿-타이 모델은 D-영역에서 비교적 강도를 잘 예측하지만 파괴 때 연성정보를 제공하진 않는다. 그러므로 RC 구조물의 강도와 연성을 예측할 수 있는 간단한 해석 도구가 필요하다. 이 연구에서 RC 구조물의 지진에 대한 거동을 해석할 수 있는 도구인 2차원 래티스 모델을 제안한다. 2차원 래티스 모델은 실험을 통한 상관관계 연구에서 RC 구조물의 강도뿐만 아니라 연성도 예측하는 것으로 나타났다.

Keywords

References

  1. 조창근, 하기주, 배수호, "FRP 보강 철근콘크리트 기둥의 변위계수법에 의한 내진성능설계기법 개발," 콘크리트학회 논문집, 19권, 4호, 2007, pp. 491-497
  2. Chopro, A. K. and Goel, R. K., "Direct Displacement-Based Design: Use of Inelasti Design Spectra versus Elastic Design Spectra," Earthquake Spectra, Vol. 17, No. 1, 2001, pp. 47-64 https://doi.org/10.1193/1.1586166
  3. Federal Emergency Management Agency (FEMA), "NEHRP Guidelines for the Seismic Rehabilitation of Buildings," Report FEMA 273 (Guidelines) and Report 274 (Commentary), Washington, DC, 1997
  4. Takeda, T., Sozne, M. A., and Nielsen, N., "Reinforced Concrete Response to Simulated Earthquakes," Journal of Structural Engineering, ASCE, Vol. 96, No. ST12, pp. 2557-2573.
  5. Cho, C. G. and Kwon, M., "Prediction of Nonlinear Bending Behavior for FRP Concrete Beams Based on Multiaxial Constitutive Laws," Engineering Structures, Vol. 30, Issue 9, 2008, pp. 2311-2320. https://doi.org/10.1016/j.engstruct.2008.01.010
  6. Spacone, E., Filippou, F. C., and Taucer, F. F., "Fiber Beamcolumn Model for Non-linear Analysis of R/C Frame: Part Formulation," Earthquake Engineering and Structural Dynamics, Vol. 25, No. 7, 1996, pp. 711-725. https://doi.org/10.1002/(SICI)1096-9845(199607)25:7<711::AID-EQE576>3.0.CO;2-9
  7. 이리형, 김윤일, 천영수, "반복하중을 받는 철근콘크리트 부재의 이력거동에 관한 해석," 대한건축학회 논문집, 5권, 4호, 1989, pp. 237-247.
  8. 이차돈, 최기봉, 차준실, 김성진, "축하중과 이축모멘트를 받는 철근콘크리트 기둥의 모멘트-곡률에 관한 모델링 및 변수고찰," 콘크리트학회 논문집, 14권, 5호, 2002, pp. 677-688. https://doi.org/10.4334/JKCI.2002.14.5.677
  9. 권민호, 조창근, "철근콘크리트 보-기둥 부재의 혼합법에 의한 층상화 유한요소 해석모델," 권민호, 조창근, 전산구조공학, 18권, 3호, 2005, pp. 7-14.
  10. 정경수, 이재승, 정진안, 최성모, "변동축력과 반복 횡하중을 받는 콘크리트충전 각형강관 기둥의 이력거동에 대한 수치해석적 평가," 대한건축학회 구조계 논문집, 24 권, 6호, 2008, pp. 27-34.
  11. Mohd Yassin, M. H., "Nonlinear Analysis of Prestressed Concrete Structures under Monotonic and Cyclic Loads," Ph. D. Thesis, Dept. of Civil Eng., UC, Berkeley, 1994.
  12. Kent, D. C. and Park, R., "Flexural Members with Confined Concrete," Journal of Structure Eng., ASCE, Vol. 97, No. ST7, 1971, pp. 1969-1990.
  13. Karsan, I. D. and Jirsa, J. O., "Behavior of Concrete under Compressive Loadings," Journal of Structural Division, ASCE, Vol. 95, No. ST12, 1969, pp. 2543-2563.
  14. Menegotto, M. and Pinto, P., "Method of Analysis for Cyclically Loaded Reinforced Concrete Plane Frames Including Changes in Geometry and Non-Elastic Behavior of Elements under Combined Normal Force and Bending," Proc., IABSE Symp. on Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, Lisbon, 1973, pp. 15-22.
  15. Mander, J. B., Priestley, M. J. N., and Park, R., "Theoretical Stress-strain Model for Confined Concrete," J. Structural Engineering, ASCE, Vol. 114, No. 8, 1988, pp. 1827-1849, pp. 131-141. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1827)
  16. Sheikh, S. A. and Uzumeri, S. M., "Analytical Model for Concrete Confinement in Tied Columns," J. Struct., Div., ASCE, Vol. 108, No. ST12, 1982, pp. 2703-2722.
  17. Saatcioglu, M. and Ozcebe, G., "Response of Reinforced Concrete Columns to Simulated Seismic Loading, American Concrete Institute," ACI Structural Journal, Vol. 86, No. 1, 1989, pp. 3-12.
  18. Xiao, Y. and Martirossyan, A., "Seismic Performance of High-Strength Concrete Columns," Journal of Structural Engineering, Vol. 124, No. 3, 1998, pp. 241-251. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:3(241)

Cited by

  1. Analysis of Nonlinear Torsional Behavior for High Strength Reinforced Concrete Structure Using 3-Dimensional Lattice Model vol.25, pp.1, 2013, https://doi.org/10.4334/JKCI.2013.25.1.029