Droplet Based Microfluidic System

액적 기반의 미세유체 시스템의 현황

  • Jung, Jae-Hoon (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
  • 정재훈 (충남대학교 화학공학과) ;
  • 이창수 (충남대학교 화학공학과)
  • Received : 2010.04.16
  • Accepted : 2010.06.14
  • Published : 2010.10.31

Abstract

Recently, droplet-based microfluidic systems are widely used in various areas ranging from fundamental science including chemistry, biology, and physics to material science and engineering. This article reviews recent development in the droplet based microfluidic system from basic fabrication of tiny device, principle of droplet formation, merging, mixing, control of droplets, and application for the synthesis of novel functional materials. We discuss strong advantages of the droplet based microfluidics in point of control of particle size, morphologies, shapes, and structures.

최근 액적 기반의 미세유체 시스템은 물리, 화학, 생물학등의 기초과학과 재료과학 분야까지 매우 폭넓게 활용되고 각광받고 있는 기술분야이다. 본 총설은 액적기반 미세유체 시스템의 미세유체 반응기 제작 기술, 액적 형성 원리, 액적 혼합 및 제어, 그리고 새로운 기능성 재료의 합성등의 폭넓은 응용분야에 관해 자세하게 소개하고자 한다. 더불어 액적기반 미세유체 시스템의 가장 큰 장점인 입자의 크기 조절 방법, 형태, 모양 및 구조의 제어 기술에 관해 논의하고자 한다.

Keywords

References

  1. Whitesides, G. M., The origins and the future of microfluidics, Nature, 442, 368 (2006). https://doi.org/10.1038/nature05058
  2. Kamholz, A. E., Proliferation of microfluidics in literature and intellectual property, Lab on a Chip, 4, 16N (2004). https://doi.org/10.1039/b400810n
  3. Yager, P., Edwards, T., Fu, E., Helton, K., Nelson, K., Tam, M. R. and Weigl, B. H., Microfluidic diagnostic technologies for global public health, Nature, 442, 412 (2006). https://doi.org/10.1038/nature05064
  4. deMello, A. J., Control and detection of chemical reactions in microfluidic systems, Nature, 442, 394 (2006). https://doi.org/10.1038/nature05062
  5. El-Ali, J., Sorger, P. K. and Jensen, K. F., Cells on chips, Nature, 442, 403 (2006). https://doi.org/10.1038/nature05063
  6. Lee, C.-C., Sui, G., Elizarov, A., Shu, C. J., Shin, Y.-S., Dooley, A. N., Huang, J., Daridon, A., Wyatt, P., Stout, D., Kolb, H. C., Witte, O. N., Satyamurthy, N., Heath, J. R., Phelps, M. E., Quake, S. R. and Tseng, H.-R., Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics, Science, 310, 1793 (2005). https://doi.org/10.1126/science.1118919
  7. Lucchetta, E. M., Munson, M. S. and Ismagilov, R. F., Characterization of the local temperature in space and time around a developing drosophila embryo in a microfluidic device, Lab on a Chip, 6, 185 (2006). https://doi.org/10.1039/b516119c
  8. Jeon, N. L., Baskaran, H., Dertinger, S. K. W., Whitesides, G. M., Water, L. V. D. and Toner, M., Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device, Nature Biotechnology, 20, 826 (2002). https://doi.org/10.1038/nbt712
  9. Squires, T. M. and Quake, S. R., Microfluidics: Fluid physics at the nanoliter scale, Reviews of Modern Physics, 77, 977 (2005). https://doi.org/10.1103/RevModPhys.77.977
  10. Kobayashi, I., Uemura, K. and Nakajima, M., Formulation of monodisperse emulsions using submicron-channel arrays, Colloids Surf. A: Physicochem Eng. Asp., 296, 285 (2007). https://doi.org/10.1016/j.colsurfa.2006.09.015
  11. Fair, R., Digital microfluidics: Is a true lab-on-a-chip possible?, Microfluidics and Nanofluidics, 3, 245 (2007). https://doi.org/10.1007/s10404-007-0161-8
  12. Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D., Stone, H. A. and Weitz, D. A., Monodisperse double emulsions generated from a microcapillary device, Science, 308, 537 (2005). https://doi.org/10.1126/science.1109164
  13. Pollack, M. G., Shenderov, A. D. and Fair, R. B., Electrowettingbased actuation of droplets for integrated microfluidics, Lab on a Chip, 2, 96 (2002). https://doi.org/10.1039/b110474h
  14. Whitesides, G. M., Ostuni, E., Takayama, S., Jiang, X. and Ingber, D. E., Soft lithography in biology and biochemistry, Annu Rev. Biomed. Eng., 3, 335 (2001). https://doi.org/10.1146/annurev.bioeng.3.1.335
  15. Ziaie, B., Baldi, A., Lei, M., Gu, Y. and Siegel, R. A., Hard and soft micromachining for biomems: Review of techniques and examples of applications in microfluidics and drug delivery, Adv. Drug Delivery Rev., 56, 145 (2004). https://doi.org/10.1016/j.addr.2003.09.001
  16. Xia, Y. and Whitesides, G. M., Soft lithography, Annu. Rev. Mater. Sci., 28, 153 (1998). https://doi.org/10.1146/annurev.matsci.28.1.153
  17. Kim, B.-Y., Hong, L.-Y., Chung, Y.-M., Kim, D.-P. and Lee, C.- S., Solvent-resistant pdms microfluidic devices with hybrid inorganic/organic polymer coatings, Adv. Funct. Mater., 19, 3796 (2009). https://doi.org/10.1002/adfm.200901024
  18. Ganguli, D. and Ganguli, M., Inorganic particle synthesis via macroand microemulsions, Kluwer Academic/Plenum Publishers, New York (2003).
  19. Nisisako, T., Torii, T., Takahashi, T. and Takizawa, Y., Synthesis of monodisperse bicolored janus particles with electrical anisotropy using a microfluidic co-flow system, Adv. Mater., 18, 1152 (2006). https://doi.org/10.1002/adma.200502431
  20. Christopher, G. F. and Anna, S. L., Microfluidic methods for generating continuous droplet streams, J. Phys. D-Appl. Phys., 40, R319 (2007). https://doi.org/10.1088/0022-3727/40/19/R01
  21. Hettiarachchi, K., Talu, E., Longo, M. L., Dayton, P. A. and Lee, A. P., On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging, Lab on a Chip, 7, 463 (2007). https://doi.org/10.1039/b701481n
  22. Zhao, Y. and Cho, S. K., Micro air bubble manipulation by electrowetting on dielectric (ewod): Transporting, splitting, merging and eliminating of bubbles, Lab on a Chip, 7, 273 (2007). https://doi.org/10.1039/b616845k
  23. Sugiura, S., Nakajima, M. and Seki, M., Effect of channel structure on microchannel emulsification, Langmuir, 18, 5708 (2002). https://doi.org/10.1021/la025813a
  24. Choi, C.-H., Jung, J.-H., Yoon, T.-H., Kim, D.-P. and Lee, C.-S., The effect of microfluidic geometry for in situ generating monodispersed hydrogels, J. Chem. Eng. Jap., 41, 649 (2008). https://doi.org/10.1252/jcej.07WE062
  25. Thorsen, T., Roberts, R. W., Arnold, F. H. and Quake, S. R., Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett., 86, 4163 (2001). https://doi.org/10.1103/PhysRevLett.86.4163
  26. Garstecki, P., Fuerstman, M. J., Stone, H. A. and Whitesides, G. M., Formation of droplets and bubbles in a microfluidic t-junctionscaling and mechanism of break-up, Lab on a Chip, 6, 437 (2006). https://doi.org/10.1039/b510841a
  27. Anna, S. L., Bontoux, N. and Stone, H. A., Formation of dispersions using "flow focusing" in microchannels, Appl. Phys. Lett., 82, 364(2003). https://doi.org/10.1063/1.1537519
  28. Tan, Y.-C., Fisher, J. S., Lee, A. I., Cristini, V. and Lee, A. P., Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting, Lab on a Chip, 4, 292 (2004). https://doi.org/10.1039/b403280m
  29. Zeng, S., Li, B., Su, X., Qin, J. and Lin, B., Microvalve-actuated precise control of individual droplets in microfluidic devices, Lab on a Chip, 9, 1340 (2009). https://doi.org/10.1039/b821803j
  30. Menetrier-Deremble, L. and Tabeling, P., Droplet breakup in microfluidic junctions of arbitrary angles, Phys. Rev. E (Statistical, Nonlinear, and Soft Matter Physics), 74, 035303 (2006). https://doi.org/10.1103/PhysRevE.74.035303
  31. Link, D. R., Anna, S. L., Weitz, D. A. and Stone, H. A., Geometrically mediated breakup of drops in microfluidic devices, Phys. Rev. Lett., 92, 054503 (2004).
  32. Hong, Y. and Wang, F., Flow rate effect on droplet control in a co-flowing microfluidic device, Microfluidics and Nanofluidics, 3, 341 (2007). https://doi.org/10.1007/s10404-006-0134-3
  33. Khler, J. M., Henkel, T., Grodrian, A., Kirner, T., Roth, M., Martin, K. and Metze, J., Digital reaction technology by micro segmented flow--components, concepts and applications, Chemical Engineering Journal, 101, 201 (2004). https://doi.org/10.1016/j.cej.2003.11.025
  34. Hung, L.-H., Choi, K. M., Tseng, W.-Y., Tan, Y.-C., Shea, K. J. and Lee, A. P., Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for cds nanoparticle synthesis, Lab on a Chip, 6, 174 (2006). https://doi.org/10.1039/b513908b
  35. Fidalgo, L. M., Abell, C. and Huck, W. T. S., Surface-induced droplet fusion in microfluidic devices, Lab on a Chip, 7, 984 (2007). https://doi.org/10.1039/b708091c
  36. Song, H., Bringer, M. R., Tice, J. D., Gerdts, C. J. and Ismagilov, R. F., Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels, Appl. Phys. Lett., 83, 4664 (2003). https://doi.org/10.1063/1.1630378
  37. Choi, C.-H., Prasad, N., Lee, N.-R. and Lee, C.-S., Investigation of microchannel wettability on the formation of droplets and efficient mixing in microfluidic devices., BioChip J., 2, 27 (2008).
  38. Chan, E. M., Alivisatos, A. P. and Mathies, R. A., High-temperature microfluidic synthesis of cdse nanocrystals in nanoliter droplets, Journal of the American Chemical Society, 127, 13854 (2005). https://doi.org/10.1021/ja051381p
  39. Onal, Y., Lucas, M. and Claus, P., Application of a capillary microreactor for selective hydrogenation of $\alpha,\beta$- unsaturated aldehydes in aqueous multiphase catalysis, Chem. Eng. Technol., 28, 972 (2005). https://doi.org/10.1002/ceat.200500147
  40. Hatakeyama, T., Chen, D. L. and Ismagilov, R. F., Microgramscale testing of reaction conditions in solution using nanoliter plugs in microfluidics with detection by maldi-ms, J. Am. Chem. Soc., 128, 2518 (2006). https://doi.org/10.1021/ja057720w
  41. Okushima, S., Nisisako, T., Torii, T. and Higuchi, T., Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices, Langmuir, 20, 9905 (2004). https://doi.org/10.1021/la0480336
  42. Chu, L.-Y., Utada, A. S., Shah, R. K., Kim, J.-W. and Weitz, D. A., Controllable monodisperse multiple emulsions, Angew. Chem. -Int. Edit., 46, 8970 (2007). https://doi.org/10.1002/anie.200701358
  43. Jung, J.-H., Choi, C.-H., Hwang, T.-S. and Lee, C.-S., Efficient in situ production of monodisperse polyurethane microbeads in microfluidic device using increase of residence time of droplets, BioChip J., 3, 44 (2009).
  44. Choi, C.-H., Jung, J.-H., Hwang, T.-S. and Lee, C.-S., In situ microfluidic synthesis of monodisperse peg microspheres, Macromol. Res., 17, 163 (2009). https://doi.org/10.1007/BF03218673
  45. Choi, C.-H., Jung, J.-H., Kim, D.-W., Chung, Y.-M. and Lee, C.- S., Novel one-pot route to monodisperse thermosensitive hollow microcapsules in a microfluidic system, Lab on a Chip, 8, 1544 (2008). https://doi.org/10.1039/b804839h
  46. Choi, C.-H., Jung, J.-H., Rhee, Y., Kim, D.-P., Shim, S.-E. and Lee, C.-S., Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device, Biomedical Microdevices, 9, 855 (2007). https://doi.org/10.1007/s10544-007-9098-7
  47. Dendukuri, D., Tsoi, K., Hatton, T. A. and Doyle, P. S., Controlled synthesis of nonspherical microparticles using microfluidics, Langmuir, 21, 2113 (2005). https://doi.org/10.1021/la047368k
  48. Prasad, N., Perumal, J., Choi, C.-H., Lee, C.-S. and Kim, D.-P., Generation of monodisperse inorganic-organic janus microspheres in a microfluidic device, Adv. Funct. Mater., 19, 1656 (2009). https://doi.org/10.1002/adfm.200801181
  49. Nie, Z., Li, W., Seo, M., Xu, S. and Kumacheva, E., Janus and ternary particles generated by microfluidic synthesis: Design, synthesis, and self-assembly, J. AM. CHEM. SOC., 128, 9408 (2006). https://doi.org/10.1021/ja060882n
  50. Jeong, W., Kim, J., Kim, S., Lee, S., Mensing, G. and Beebe, D. J., Hydrodynamic microfabrication via "On the fly" Photopolymerization of microscale fibers and tubes, Lab on a Chip, 4, 576 (2004). https://doi.org/10.1039/b411249k
  51. Jung, J.-H., Choi, C.-H., Chung, S., Chung, Y.-M. and Lee, C.- S., Microfluidic synthesis of a cell adhesive janus polyurethane microfiber, Lab on a Chip, 9, 2596 (2009). https://doi.org/10.1039/b901308c
  52. Poenar, D. P., Iliescub, C., Carp, M., Pang, A. J. and Leck, K. J., Glass-based microfluidic device fabricated by parylene wafer-towafer bonding for impedance spectroscopy Sensors and Actuators A, 139, 162 (2007). https://doi.org/10.1016/j.sna.2006.10.009
  53. Chandrasekaran, A., Acharya, A., You, J. L., Soo, K. Y., Packirisamy, M., Stiharu, I. and Darveau, A., Hybrid integrated silicon microfluidic platform for fluorescence based biodetection, Sensors, 1901 (2007).
  54. Huang, K.-S., Liu, M.-K., Wu, C.-H., Yen, Y.-T. and Lin, Y.-C., Calcium alginate microcapsule generation on a microfluidic system fabricated using the optical disk process, J. Micromech. Microeng., 17, 1428 (2007). https://doi.org/10.1088/0960-1317/17/8/003