The state-of-the art of groundwater flow modeling for safety assessment of a radwaste repository

방폐물 처분장 안전성 평가를 위한 지하수 유동 모델링 연구 현황

  • Ji, Sung-Hoon (Department of Radwaste Disposal Technology Development, Korea Atomic Energy Research Institute) ;
  • Koh, Yong-Kwon (Department of Radwaste Disposal Technology Development, Korea Atomic Energy Research Institute)
  • 지성훈 (한국원자력연구원 방사성폐기물기술개발부) ;
  • 고용권 (한국원자력연구원 방사성폐기물기술개발부)
  • Published : 2010.04.30

Abstract

Characterization of the groundwater flow system is one of the important processes for safety assessment of a radwaste repository, and it can be conceptualized and materialized by groundwater flow modeling. Since a radwaste repository is mostly likely to be located in a fractured rock aquifer, we reviewed the mathematical approaches to describe the groundwater flow in a fractured rock aquifer, and several modeling cases of nuclear advanced nations for safety assessment of their real or hypothetical radwaste repository, which can be used in making the R&D items in the related field.

방사성폐기물 처분장의 안전성 평가에 있어 지하수 유동 특성 평가는 매우 중요하며 이는 지하수 유동 모델링을 통해 개념화되고 구체화될 수 있다. 방사성폐기물 처분장은 심부 단열 암반 대수층에 건설될 확률이 높으며, 이에 본 논문에서는 단열 암반 대수층에서의 지하수 유동 모델링을 대상으로 해외 연구 동향을 검토하고 향후 국내 연구개발의 진행방향을 모색하고자 하였다.

Keywords

References

  1. 구민호, 차장환, 2002, 시추공 유속 검층을 이용한 암반 대수층의 수리전도도 분포 산정. 대한지질공학회지, 12, 257-271.
  2. 김태희, 김구영, 오준호, 황세호, 2007, 균열암반 매질 내 단공 및 공간 간섭 시험에 대한 현상적 비교. 지하수토양환경, 12, 39-53.
  3. 나한나, 구민호, 차장환, 김용제, 2007, 지하수 모델의 주요 경계조건에 대한 민감도 분석 사례. 지하수토양환경, 12, 53-65.
  4. 박경우, 지성훈, 김천수, 김경수, 김지연, 2008, 중.저준위 방사성폐기물 처분 부지의 지하수 유동에 대한 수치 모사: 1. 지하수 유동 모델링. 방사성폐기물학회지, 6, 265-282.
  5. 심병완, 정상용, 2004, 단열암반 대수층에서 조석분석법을 이용한 수리상수 추정. 지하수토양환경, 9, 27-32.
  6. 오찬성, 김준모, 2008, 경주 중․저준위 방사성 폐기물 처분장 부지에서의 지하수 유동과 염분 및 방사성 핵종 이동 삼차원 수치 모의. 지질학회지, 44, 489-505.
  7. 함세영, 1995, 프락탈 모델에 의한 한국의 균열 대수층의 수리특성(I). 지질학회지, 31, 467-481.
  8. Carrera, J., Heredia, J., Vomvoris, S. and Hufschmied, P., 1990, Modeling of flow on a small fractured monzonitic gneiss block. In:Neuman, S.P. and Neretnieks, I.(eds.), Hydrogeology of low permeability environments. International Association of Hydrogeologists, Heise, Hannover, 115-167.
  9. Dershowitz, W.S., Wallman, P. and Kinrod, S., 1991, Discrete fracture modeling for the Stripa site characterization and validation drift inflow predictions. Stripa Project Technical Report 91-16, SKB, Stockholm.
  10. Diebold, P., Naef, H. and Ammann, M., 1991, Zur Tektonik der zentralen Nord-schweiz. Interpretation aufgrund regionaler Seimik, Oberflachengeologie und Tiefbohrungen. NTB90-04, Nagra, Wettingen.
  11. Everitt, R.A., 2002, Geological model of the moderately fractured rock experiment area, NWMD Rep. 06919-REP-01300-10048-R00. Ontario Power Generation, Toronto.
  12. Gerke, H.H. and van Genuchten, M.T., 1993, A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resources Research, 29, 305-319. https://doi.org/10.1029/92WR02339
  13. Gustafsson, B.G., 2004a, Millenial changes of the Baltic Sea salinity: Studies of the sensitivity of the salinity to climate change, TR-04-12. SKB, Stockholm.
  14. Gustafsson, B.G., 2004b, Sensitivity of Baltic Sea salinity to large perturbations in climate. Climate Research, 27, 237-251. https://doi.org/10.3354/cr027237
  15. Hartley, L., Hoch, A., Jackson, P., Joyce, S., McCarthy, R., Swift, B., Gylling, B. and Marsic, N., 2006a, Groundwater flow and transport modelling during the temperate period for the SR-Can assessment: Lexemar subarea - version 1.2, R-06-99. SKB, Stockholm.
  16. Hartley, L., Hoch, A., Jackson, P., Joyce, S., McCarthy, R., Rodwell, W., Swift, B. and Marsic, N., 2006b, Groundwater flow and transport modelling during the temperate period for the SR-Can assessment: Forsmark area - version 1.2, R-06-98. SKB, Stockholm.
  17. Hsieh, P.A., Neuman, S.P., Stiles, G.K. and Simpson, E.S., 1985, Field determination of the three-dimensional hydraulic conductivity tensor of anisotropic media: 2. Methodology and application to fractured rocks. Water Resources Research, 21, 1667-1676. https://doi.org/10.1029/WR021i011p01667
  18. Jackson, C.P., Hoch, A.R. and Todman, S., 2000, Self-consistency of a heterogeneous continuum porous medium representation of a fractured medium. Water Resources Research, 36, 1763-1783.
  19. Jones, J.W., Simpson, E.S., Neuman, S.P. and Keys, W.S., 1985, Field and theoretical investigations of fractured crystalline rock near Oracle, Arizona, CR-3736. U.S. Nuclear Regulatory Commission, Washington, D.C.
  20. Kazemi, H. and Gilman, J.R., 1993, Multiphase flow in fractured petroleum reservoirs. In:Bear, J., Tsang, C.F. and de Marsily, G.(eds.), Flow and contaminant transport in fractured rocks, Academic Press, New York, 267-323.
  21. Long, J.C.S., Remer, J.S., Wilson, C.R. and Witherspoon, P.A., 1982, Porous media equivalents for networks of discontinuous fractures. Water Resources Research, 18, 645-658. https://doi.org/10.1029/WR018i003p00645
  22. Moench, A.F., 1984, Double porosity models for a fissured groundwater reservoir with fracture skin. Water Resources Research, 20, 831-846. https://doi.org/10.1029/WR020i007p00831
  23. National Research Council (NRC), 1996, Rock fractures and fluid flow: Contemporary understanding and applications. National Academy Press, Washington, D.C.
  24. OCRWM, 2002, Final environmental impact statement for a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste at Yucca Mountain, Nye County, Nevada, DOE/EIS-0250. OCRWM, Las Vegas.
  25. Oda, M., 1985, Permeability tensor for discontinuous rock masses. Geotechnique, 35, 483-495. https://doi.org/10.1680/geot.1985.35.4.483
  26. Park, Y.-J., Sudicky, E.A., McLaren, R.G. and Sykes, J.F., 2004, Analysis of hydraulic and tracer tests within moderately fractured rock based on a transition probability geostatistical approach. Water Resources Research, 40, W12404, doi:10.1029/2004WR003188.
  27. Passe, T., 1997, A mathematical model of past, present and future shore level displacement in Fennoscandia, TR-97-28. SKB, Stockholm.
  28. Schwartz, F.W., Sudicky, E.A., McLaren, R.G. and Park, Y.-J., 2007, Application of a dual-porosity dualpermeability model to study the impact of climate change on subsurface flow and transport at Yucca Mountain, EPRI Report [Chapter 5.11].
  29. SKB, 2005, Preliminary site description Forsmark area - version 1.2, R-05-18. SKB, Stockholm.
  30. SKB, 2008, http://www.skb.se/Templates/Standard_24109.aspx
  31. Thury, M., Gautschi, A., Mazurek, M., Muller, W.H., Naef, H., Pearson, F.J., Vomvoris, S. and Wilson, W., 1994, Geology and hydrogeology of the crystalline basement of northern Switzerland: Synthesis of regional investigations 1981-1993 within the Nagra radioactive waste disposal programme, NTB93-01. Nagra, Wettingen.
  32. Vomvoris, S., Voborny, O., Wilson, W., Andrews, R. and Hurlimann, W., 1992, Hydrogeology of crystalline rocks of Northern Switzerland: Synthesis of results relevant to safety analysis, Reference Area West, Nagra intern. Rep. Nagra, Wettingen.