DOI QR코드

DOI QR Code

Polyphenol (-)-Epigallocatechin Gallate during Ischemia Limits Infarct Size Via Mitochondrial $K_{ATP}$ Channel Activation in Isolated Rat Hearts

  • Song, Dae-Kyu (Department of Physiology, School of Medicine, Keimyung University) ;
  • Jang, Young-Ho (Department of Anesthesiology, Pureun Hospital) ;
  • Kim, June-Hong (Institute of Cardiovascular Research, Pusan National University Yangsan Hospital) ;
  • Chun, Kook-Jin (Institute of Cardiovascular Research, Pusan National University Yangsan Hospital) ;
  • Lee, Deok-Hee (Department of Anesthesiology and Pain Medicine, College of Medicine, Yeungnam University) ;
  • Xu, Zhelong (Department of Anesthesiology, University of North Carolina)
  • Published : 2010.03.02

Abstract

Polyphenol (-)-epigallocatechin gallate (EGCG), the most abundant catechin of green tea, appears to attenuate myocardial ischemia/reperfusion injury. We investigated the involvement of ATP-sensitive potassium ($K_{ATP}$) channels in EGCG-induced cardioprotection. Isolated rat hearts were subjected to 30 min of regional ischemia and 2 hr of reperfusion. EGCG was perfused for 40 min, from 10 min before to the end of index ischemia. A nonselective $K_{ATP}$ channel blocker glibenclamide (GLI) and a selective mitochondrial $K_{ATP}$ ($mK_{ATP}$) channel blocker 5-hydroxydecanoate (HD) were perfused in EGCG-treated hearts. There were no differences in coronary flow and cardiodynamics including heart rate, left ventricular developed pressure, rate-pressure product, +dP/$dt_{max}$, and -dP/$dt_{min}$ throughout the experiments among groups. EGCG-treatment significantly reduced myocardial infarction ($14.5{\pm}2.5%$ in EGCG $1{\mu}M$ and $4.0{\pm}1.7%$ in EGCG $10{\mu}M$, P<0.001 vs. control $27.2{\pm}1.4%$). This antiinfarct effect was totally abrogated by $10{\mu}M$ GLI ($24.6{\pm}1.5%$, P<0.001 vs. EGCG). Similarly, $100{\mu}M$ HD also aborted the anti-infarct effect of EGCG ($24.1{\pm}1.2%$, P<0.001 vs. EGCG ). These data support a role for the $K_{ATP}$ channels in EGCG-induced cardioprotection. The $mK_{ATP}$ channels play a crucial role in the cardioprotection by EGCG.

Keywords

References

  1. Sano J, Inami S, Seimiya K, Ohba T, Sakai S, Takano T, Mizuno K. Effects of green tea intake on the development of coronary artery disease. Circ J 2004; 68: 665-70. https://doi.org/10.1253/circj.68.665
  2. Higdon JV, Frei B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Cirt Rev Food Sci Nutr 2003; 43: 89-143. https://doi.org/10.1080/10408690390826464
  3. Kuriyama S, Shimazu T, Ohmori K, Kikuchi N, Nakaya N, Nishino Y, Tsubono Y, Tsuji I. Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study. JAMA 2006; 296: 1255-65. https://doi.org/10.1001/jama.296.10.1255
  4. Aneja R, Hake PW, Burroughs TJ, Denenberg AG, Wong HR, Zingarelli B. Epigallocatechin, a green tea polyphenol, attenuates myocardial ischemia reperfusion injury in rats. Mol Med 2004; 10: 55-62. https://doi.org/10.1007/s00894-003-0166-5
  5. Townsend PA, Scarabelli TM, Pasini E, Gitti G, Menegazzi M, Suzuki H, Knight RA, Latchman DS, Stephanou A. Epigallocatechin-3- gallate inhibits STAT-1 activation and protects cardiac myocytes from ischemia/reperfusion-induced apoptosis. FASEB J 2004; 18: 1621-3.
  6. Tani M. Mechanisms of $Ca^{2+}$ overload in reperfused ischemic myocardium. Annu Rev Physiol 1990; 52: 543-59. https://doi.org/10.1146/annurev.ph.52.030190.002551
  7. Ylitalo KV, Ala-Rami A, Liimatta EV, Peuhkurinen KJ, Hassinen IE. Intracellular free calcium and mitochondrial membrane potential in ischemia/reperfusion and preconditioning. J Mol Cell Cardiol 2000; 32: 1223-38. https://doi.org/10.1006/jmcc.2000.1157
  8. Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D'Alonzo AJ, Lodge NJ, Smith MA, Grover GJ. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive $K^{+}$ channels. Possible mechanism of cardioprotection. Circ Res 1997; 81: 1072-82. https://doi.org/10.1161/01.RES.81.6.1072
  9. O'Rourke B. Myocardial K (ATP) channels in preconditioning. Circ Res 2000; 87: 845-55. https://doi.org/10.1161/01.RES.87.10.845
  10. Grover GJ, D'Alonzo AJ, Garlid KD, Bajgar R, Lodge NJ, Sleph PG, Darbenzio RB, Hess TA, Smith MA, Paucek P, Atwal KS. Pharmacologic characterization of BMS-191095, a mitochondrial $K_{ATP}$ opener with no peripheral vasodilator or cardiac action potential shortening activity. J Pharmacol Exp Ther 2001; 297: 1184-92.
  11. Bopassa JC, Ferrera R, Gateau-Roesch O, Couture-Lepetit E, Ovize M. PI3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning. Cardiovasc Res 2006; 69: 178-85. https://doi.org/10.1016/j.cardiores.2005.07.014
  12. Burley DS, Baxter GF. B-type natriuretic peptide at early reperfusion limits infarct size in the rat isolated heart. Basic Res Cardiol 2007; 102: 529-41. https://doi.org/10.1007/s00395-007-0672-1
  13. Jang Y, Xi J, Wang H, Mueller RA, Norfleet EA, Xu Z. Postconditioning prevents reperfusion injury by activating delta-opioid receptors. Anesthesiology 2008; 108: 243-50. https://doi.org/10.1097/01.anes.0000299437.93898.4a
  14. Baek WK, Jang BC, Lim JH, Kwon TK, Lee HY, Cho CH, Kim DK, Shin DH, Park JG, Lim JG, Bae JH, Yoo SK, Park WK, Song DK. Inhibitory modulation of ATP-sensitive potassium channels by gallate- ester moiety of (-)-epigallocatechin-3-gallate. Biochem Pharmacol 2005; 70: 1560-7. https://doi.org/10.1016/j.bcp.2005.09.005
  15. Shinohara T, Takahashi N, Kohno H, Yamanaka K, Ooie T, Wakisaka O, Murozono Y, Taniguchi Y, Torigoe Y, Hara M, Shimada T, Saikawa T, Yoshimatsu H. Mitochondria are targets for geranylgeranylacetone- induced cardioprotection against ischemia-reperfusion in the rat heart. Am J Physiol Heart Circ Physiol 2007; 293: H1892-9. https://doi.org/10.1152/ajpheart.00493.2007
  16. Chow HH, Hakim IA, Vining DR, Crowell JA, Ranger-Moore J, Chew WM, Celaya CA, Rodney SR, Hara Y, Alberts DS. Effects of dosing condition on the oral bioavailability of green tea catechins after single-dose administration of Polyphenon E in healthy individuals. Clin Cancer Res 2005; 11: 4627-33. https://doi.org/10.1158/1078-0432.CCR-04-2549
  17. Liu H, Wang L, Eaton M, Schaefer S. Sevoflurane preconditioning limits intracellular/mitochondrial $Ca^{2+}$ in ischemic newborn myocardium. Anesth Analg 2005; 101: 349-55. https://doi.org/10.1213/01.ANE.0000154197.24763.EC
  18. Tani M, Neely JR. Role of intracellular $Na^{+}$ and $Ca^{2+}$ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Possible involvement of $H^{+}$-$Na^{+}$ and $Na^{+}$-$Ca^{2+}$ exchange. Circ Res 1989; 65: 1045-56. https://doi.org/10.1161/01.RES.65.4.1045
  19. Jin JY, Park SH, Bae JH, Cho HC, Lim JG, Park WS, Han J, Lee JH, Song DK. Uncoupling by (-)-epigallocatechin-3-gallate of ATP-sensitive potassium channels from phosphatidylinositol polyphosphates and ATP. Pharmacol Res 2007; 56: 237-47. https://doi.org/10.1016/j.phrs.2007.06.004
  20. Wang L, Cherednichenko G, Hernandez L, Halow J, Camacho SA, Figueredo V, Schaefer S. Preconditioning limits mitochondrial $Ca^{2+}$ during ischemia in rat hearts: role of $K_{ATP}$ channels. Am J Physiol Heart Circ Physiol 2001; 280: H2321-8.
  21. Ferrari R. The role of mitochondria in ischemic heart disease. J Cardiovasc Pharmacol 1996; 28 (Suppl 1): S1-10.
  22. Holmuhamedov EL, Jovanovic S, Dzeja PP, Jovanovic A, Terzic A. Mitochondrial ATP-sensitive $K^{+}$ channels modulate cardiac mitochondrial function. Am J Physiol 1998; 275: H1567-76.
  23. Steenbergen C, Fralix TA, Murphy E. Role of increased cytosolic free calcium concentration in myocardial ischemic injury. Basic Res Cardiol 1993; 88: 456-70. https://doi.org/10.1007/BF00795412
  24. Meissner A, Morgan JP. Contractile dysfunction and abnormal $Ca^{2+}$ modulation during postischemic reperfusion in rat heart. Am J Physiol 1995; 268: H100-11.
  25. Lochner A, Genade S, Moolman JA. Ischemic preconditioning: infarct size is a more reliable endpoint than functional recovery. Basic Res Cardiol 2003; 98: 337-46. https://doi.org/10.1007/s00395-003-0427-6
  26. Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM. Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc Res 2002; 55: 534-43. https://doi.org/10.1016/S0008-6363(02)00455-8
  27. Weiss JN, Korge P, Honda HM, Ping P. Role of the mitochondrial permeability transition in myocardial disease. Circ Res 2003; 93: 292-301. https://doi.org/10.1161/01.RES.0000087542.26971.D4
  28. Krolikowski JG, Bienengraeber M, Weihrauch D, Warltier DC, Kersten JR, Pagel PS. Inhibition of mitochondrial permeability transition enhances isoflurane-induced cardioprotection during early reperfusion: the role of mitochondrial KATP channels. Anesth Analg 2005; 101: 1590-6.
  29. Piriou V, Chiari P, Gateau-Roesch O, Argaud L, Muntean D, Salles D, Loufouat J, Gueugniaud PY, Lehot JJ, Ovize M. Desflurane-induced preconditioning alters calcium-induced mitochondrial permeability transition. Anesthesiology 2004; 100: 581-8. https://doi.org/10.1097/00000542-200403000-00018

Cited by

  1. Effects of postconditioning with N,N,N'N'-tetrakis-[2-pyridylmethyl]-ethylenediamine in isolated rat hearts vol.58, pp.3, 2010, https://doi.org/10.4097/kjae.2010.58.3.290
  2. Activated Protein C Protects Myocardium Via Activation of Anti-apoptotic Pathways of Survival in Ischemia-reperfused Rat Heart vol.25, pp.11, 2010, https://doi.org/10.3346/jkms.2010.25.11.1609
  3. Mitochondrial Effects of Plant-Made Compounds vol.15, pp.12, 2010, https://doi.org/10.1089/ars.2011.4021
  4. The Protective Effect of Epigallocatechin-3 Gallate on Ischemia/Reperfusion Injury in Isolated Rat Hearts: An ex vivo Approach vol.15, pp.5, 2011, https://doi.org/10.4196/kjpp.2011.15.5.259
  5. Morphine-induced postconditioning modulates mitochondrial permeability transition pore opening via delta-1 opioid receptors activation in isolated rat hearts vol.60, pp.6, 2011, https://doi.org/10.4097/kjae.2011.60.6.69
  6. Morphine-induced postconditioning modulates mitochondrial permeability transition pore opening via delta-1 opioid receptors activation in isolated rat hearts vol.61, pp.1, 2010, https://doi.org/10.4097/kjae.2011.61.1.69
  7. Insights into restrictive cardiomyopathy from clinical and animal studies vol.8, pp.3, 2011, https://doi.org/10.3724/sp.j.1263.2011.00168
  8. Stromal Cell Derived Factor‐1 (SDF‐1) Targeting Reperfusion Reduces Myocardial Infarction in Isolated Rat Hearts vol.30, pp.5, 2012, https://doi.org/10.1111/j.1755-5922.2011.00301.x
  9. Protective Effect of Sauchinone Against Regional Myocardial Ischemia/Reperfusion Injury: Inhibition of p38 MAPK and JNK Death Signaling Pathways vol.27, pp.5, 2010, https://doi.org/10.3346/jkms.2012.27.5.572
  10. Cardiodynamics and Infarct Size in Regional and Global Ischemic Isolated Heart Model: Comparison of 1 Hour and 2 Hours Reperfusion vol.42, pp.9, 2010, https://doi.org/10.4070/kcj.2012.42.9.600
  11. Polyphenol (-)-epigallocatechin gallate-induced cardioprotection may attenuate ischemia-reperfusion injury through adenosine receptor activation: a preliminary study vol.63, pp.4, 2010, https://doi.org/10.4097/kjae.2012.63.4.340
  12. Contribution of apoptosis in myocardial reperfusion injury and loss of cardioprotection in diabetes mellitus vol.65, pp.3, 2010, https://doi.org/10.1007/s12576-015-0365-8
  13. Epigallocatechin Gallate Reduces Ischemia/Reperfusion Injury in Isolated Perfused Rabbit Hearts vol.19, pp.2, 2010, https://doi.org/10.3390/ijms19020628
  14. Cardioprotection and natural polyphenols: an update of clinical and experimental studies vol.9, pp.12, 2010, https://doi.org/10.1039/c8fo01307a
  15. Dietary Polyphenols and Mitochondrial Function: Role in Health and Disease vol.26, pp.19, 2010, https://doi.org/10.2174/0929867324666170529101810
  16. Regulation of the Mitochondrial BK Ca Channel by the Citrus Flavonoid Naringenin as a Potential Means of Preventing Cell Damage vol.25, pp.13, 2010, https://doi.org/10.3390/molecules25133010
  17. Pharmacology of Catechins in Ischemia-Reperfusion Injury of the Heart vol.10, pp.9, 2010, https://doi.org/10.3390/antiox10091390