DOI QR코드

DOI QR Code

Clinical Evaluation of the Multiplex PCR Assay for the Detection of Bacterial Pathogens in Respiratory Specimens from Patients with Pneumonia

호흡기 검체에서 폐렴의 세균성 원인균 검출을 위한 다중 PCR 검사의 임상적 평가

  • Jung, Chae-Lim (Department of Laboratory Medicine, School of Medicine, Ewha Womans University) ;
  • Lee, Mi-Ae (Department of Laboratory Medicine, School of Medicine, Ewha Womans University) ;
  • Chung, Wha-Soon (Department of Laboratory Medicine, School of Medicine, Ewha Womans University)
  • 정채림 (이화여자대학교 의학전문대학원 진단검사의학교실) ;
  • 이미애 (이화여자대학교 의학전문대학원 진단검사의학교실) ;
  • 정화순 (이화여자대학교 의학전문대학원 진단검사의학교실)
  • Published : 2010.03.20

Abstract

Background: Community-acquired pneumonia (CAP) is a major infectious disease with significant morbidity and mortality worldwide. Streptococcus pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae, Chlamydophila pneumoniae, Legionella pneumophila, and Bordetella pertussis are common pathogens of CAP; however, the conventional methods used to detect these agents, including culturing, lack sensitivity and are time-consuming. We evaluated a recently developed multiplex PCR assay which can test these agents simultaneously. Methods: One hundred patients with pneumonia and 99 healthy adults were tested using the Seeplex Pneumobacter ACE Detection assay (Seegene, Inc., Seoul, Korea). Culture and urinary antigen tests were also performed. Results: In patients with pneumonia, the positive detection rates of PCR for S. pneumoniae and H. influenzae were 52.0% (52/100) and 30.0% (30/100), respectively, those of M. pneumoniae and L. pneumophila were 2.0% (2/100) and 1.0% (1/100), respectively, and B. pertussis and C. pneumoniae were not detected. In healthy adults, the detection rates of S. pneumoniae and H. influenzae revealed similar results, 53.5% (53/101) and 40.4% (40/101), respectively, and the other four pathogens were not detected. The sensitivity and specificity of PCR for S. pneumoniae in pneumonia patients were 100% (95% confidence interval [CI], 87.9~100%) and 65.7% (95% CI, 55.2~76.5%), respectively, according to the urinary antigen test and cultures of the respiratory samples and blood. Conclusion: Differentiating S. pneumoniae and H. influenzae colonization from infection was difficult using the PCR assay. Therefore, the use of this assay is inappropriate for the diagnosis of pneumonia due to these agents, although multiplex PCR assay would be useful for the detection of M. pneumoniae and L. pneumophila.

배경: 지역 사회 획득 폐렴은 전 세계적으로 유병률과 사망률이 높은 주요한 감염 질환 중의 하나이다. Streptococcus pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae, Chlamydophila pneumoniae, Legionella pneumophila, Bordetella pertussis 등은 지역 사회 획득 폐렴의 흔한 원인균들이나, 배양 등의 전통적인 방법은 민감도가 낮고 시간이 많이 소요된다. 최근 이 균주들을 한 번에 검사할 수 있는 다중 PCR 검사가 개발되어, 본 연구에서는 폐렴 환자의 호흡기 검체에서 다중 PCR 검사를 평가하고자 하였다. 방법: 폐렴 환자 100명과 정상인 99명에 대해 Seeplex Pneumobacter ACE Detection assay (Seegene Inc., Seoul, Korea)를 시행하였다. 소변 항원 검사와 배양 검사도 함께 실시하였다. 결과: 다중 PCR 결과 S. pneumoniae와 H. influenzae가 각각 폐렴 환자의 52.5% (53/101), 30.7% (31/101)에서 양성이었고, M. pneumoniae와 L. pneumophila는 각각 2.0% (2/101), 1.0% (1/101)에서 양성이었으며, B. pertussis 및 C. pneumoniae는 검출되지 않았다. 정상인은 S. pneumoniae와 H. influenzae의 양성률이 각각 53.5% (53/99), 40.4% (40/99)로 폐렴군과 비슷하게 나타났고, 나머지 4균주는 검출되지 않았다. 폐렴군에서 S. pneumoniae의 다중 PCR 검사에 대한 민감도와 특이도는 소변 항원 검사, 호흡기 검체 및 혈액 배양 검사를 모두 기준으로 했을 때 각각 100% (95% 신뢰구간, 87.9~100%)와 66.7% (95% 신뢰구간, 55.2~76.5%)였다. 결론: S. pneumoniae와 H. influenzae 균주의 다중 PCR 검사는 집락 형성과 현성 감염의 감별이 어려워 분자 유전 검사를 적용하기 적합하지 않다. M. pneumoniae와 L. pneumophila는 정상인에서 검출되지 않았고, 배양하기도 어려워 다중 PCR 검사가 유용할 것으로 생각한다.

Keywords

References

  1. Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, et al. Infectious diseases society of America/American thoracic society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 2007;44(Suppl 2):S27-72.
  2. Song JH, Oh WS, Kang CI, Chung DR, Peck KR, Ko KS, et al. Epidemiology and clinical outcomes of community-acquired pneumonia in adult patients in Asian countries: a prospective study by the Asian network for surveillance of resistant pathogens. Int J Antimicrob Agents 2008;31:107-14. https://doi.org/10.1016/j.ijantimicag.2007.09.014
  3. Woo JH, Kang JM, Kim YS, Shin WS, Ryu JH, Choi JH, et al. A prospective multicenter study of community-acquired pneumonia in adults with emphasis on bacterial etiology. Korean J Infect Dis 2001;33:1-7. https://doi.org/10.1086/320870
  4. Jung KS. Pneumonia in the elderly patients. Korean J Med 2008;75:129-40.
  5. Murdoch DR. Molecular genetic methods in the diagnosis of lower respiratory tract infections. APMIS 2004;112:713-27. https://doi.org/10.1111/j.1600-0463.2004.apm11211-1202.x
  6. Chan YR, Morris A. Molecular diagnostic methods in pneumonia. Curr Opin Infect Dis 2007;20:157-64. https://doi.org/10.1097/QCO.0b013e32808255f1
  7. Jeon BH, Kim M, Kim JH, Shin SY, Lee J. The etiologic agents and clinical outcomes of adult community-acquired pneumonia in Jeju. Tuberc Respir Dis 2009;66:358-64. https://doi.org/10.4046/trd.2009.66.5.358
  8. Stralin K, Backman A, Holmberg H, Fredlund H, Olcen P. Design of a multiplex PCR for Streptococcus pneumoniae, Haemophilus influenzae, Mycoplasma pneumoniae and Chlamydophila pneumoniae to be used on sputum samples. APMIS 2005;113:99-111. https://doi.org/10.1111/j.1600-0463.2005.apm1130203.x
  9. Croft AC and Woods GL. Specimen Collection and Handling for Diagnosis of Infectious Diseases. In: Mcpherson RA and Pincus MR, eds. Henry's Clinical Diagnosis and Management by Laboratory Methods. 21st ed, Philadelphia; WB Saunders, 2007: 1188-203.
  10. Klugman KP, Madhi SA, Albrich WC. Novel approaches to the identification of Streptococcus pneumoniae as the cause of community-acquired pneumonia. Clin Infect Dis 2008;47(Suppl 3):S202-6. https://doi.org/10.1086/591405
  11. Murdoch DR, Laing RT, Mills GD, Karalus NC, Town GI, Mirrett S, et al. Evaluation of a rapid immunochromatographic test for detection of Streptococcus pneumoniae antigen in urine samples from adults with community-acquired pneumonia. J Clin Microbiol 2001;39:3495-8. https://doi.org/10.1128/JCM.39.10.3495-3498.2001
  12. Murdoch DR, Anderson TP, Beynon KA, Chua A, Fleming AM, Laing RT, et al. Evaluation of a PCR assay for detection of Streptococcus pneumoniae in respiratory and nonrespiratory samples from adults with community-acquired pneumonia. J Clin Microbiol 2003;41:63-6. https://doi.org/10.1128/JCM.41.1.63-66.2003
  13. Stralin K, Korsgaard J, Olcen P. Evaluation of a multiplex PCR for bacterial pathogens applied to bronchoalveolar lavage. Eur Respir J 2006;28:568-75. https://doi.org/10.1183/09031936.06.00006106
  14. Greenberg D, Broides A, Blancovich I, Peled N, Givon-Lavi N, Dagan R. Relative importance of nasopharyngeal versus oropharyngeal sampling for isolation of Streptococcus pneumoniae and Haemophilus influenzae from healthy and sick individuals varies with age. J Clin Microbiol 2004;42:4604-9. https://doi.org/10.1128/JCM.42.10.4604-4609.2004
  15. Cardozo DM, Nascimento-Carvalho CM, Souza FR, Silva NM. Nasopharyngeal colonization and penicillin resistance among pneumococcal strains: a worldwide 2004 update. Braz J Infect Dis 2006;10:293-304. https://doi.org/10.1590/S1413-86702006000400015
  16. Abdullahi O, Nyiro J, Lewa P, Slack M, Scott JA. The descriptive epidemiology of Streptococcus pneumoniae and Haemophilus influenzae nasopharyngeal carriage in children and adults in Kilifi district, Kenya. Pediatr Infect Dis J 2008;27:59-64. https://doi.org/10.1097/INF.0b013e31814da70c
  17. Brugger SD, Hathaway LJ, Muhlemann K. Detection of Streptococcus pneumoniae strain cocolonization in the nasopharynx. J Clin Microbiol 2009;47:1750-6. https://doi.org/10.1128/JCM.01877-08
  18. Kumar S, Wang L, Fan J, Kraft A, Bose ME, Tiwari S, et al. Detection of 11 common viral and bacterial pathogens causing community-acquired pneumonia or sepsis in asymptomatic patients by using a multiplex reverse transcription-PCR assay with manual (enzyme hybridization) or automated (electronic microarray) detection. J Clin Microbiol 2008;46:3063-72. https://doi.org/10.1128/JCM.00625-08
  19. Stralin K, Tornqvist E, Kaltoft MS, Olcen P, Holmberg H. Etiologic diagnosis of adult bacterial pneumonia by culture and PCR applied to respiratory tract samples. J Clin Microbiol 2006;44:643-5. https://doi.org/10.1128/JCM.44.2.643-645.2006
  20. Johansson N, Kalin M, Giske CG, Hedlund J. Quantitative detection of Streptococcus pneumoniae from sputum samples with real-time quantitative polymerase chain reaction for etiologic diagnosis of community-acquired pneumonia. Diagn Microbiol Infect Dis 2008;60:255-61. https://doi.org/10.1016/j.diagmicrobio.2007.10.011
  21. Kais M, Spindler C, Kalin M, Ortqvist A, Giske CG. Quantitative detection of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in lower respiratory tract samples by real-time PCR. Diagn Microbiol Infect Dis 2006;55:169-78. https://doi.org/10.1016/j.diagmicrobio.2006.01.007
  22. Carvalho Mda G, Tondella ML, McCaustland K, Weidlich L, McGee L, Mayer LW, et al. Evaluation and improvement of real-time PCR assays targeting lytA, ply, and psaA genes for detection of pneumococcal DNA. J Clin Microbiol 2007;45:2460-6. https://doi.org/10.1128/JCM.02498-06
  23. Park J, Kim JK, Rheem I, Kim J. Evaluation of seeplex(TM) pneumobacter multiplex PCR kit for the detection of respiratory bacterial pathogens in pediatric patients. Korean J Lab Med 2009;29:307-13. https://doi.org/10.3343/kjlm.2009.29.4.307