DOI QR코드

DOI QR Code

Protease and Protease-Activated Receptor-2 Signaling in the Pathogenesis of Atopic Dermatitis

  • Lee, Sang-Eun (Department of Dermatology, Yonsei University College of Medicine) ;
  • Jeong, Se-Kyoo (Research Division, NeoPharm Co., Ltd.) ;
  • Lee, Seung-Hun (Department of Dermatology, Yonsei University College of Medicine)
  • Published : 2010.12.01

Abstract

Proteases in the skin are essential to epidermal permeability barrier homeostasis. In addition to their direct proteolytic effects, certain proteases signal to cells by activating protease-activated receptors (PARs), the G-protein-coupled receptors. The expression of functional PAR-2 on human skin and its role in inflammation, pruritus, and skin barrier homeostasis have been demonstrated. Atopic dermatitis (AD) is a multifactorial inflammatory skin disease characterized by genetic barrier defects and allergic inflammation, which is sustained by gene-environmental interactions. Recent studies have revealed aberrant expression and activation of serine proteases and PAR-2 in the lesional skin of AD patients. The imbalance between proteases and protease inhibitors associated with genetic defects in the protease/protease inhibitor encoding genes, increase in skin surface pH, and exposure to proteolytically active allergens contribute to this aberrant protease/PAR-2 signaling in AD. The increased protease activity in AD leads to abnormal desquamation, degradation of lipid-processing enzymes and antimicrobial peptides, and activation of primary cytokines, thereby leading to permeability barrier dysfunction, inflammation, and defects in the antimicrobial barrier. Moreover, up-regulated proteases stimulate PAR-2 in lesional skin of AD and lead to the production of cytokines and chemokines involved in inflammation and immune responses, itching sensation, and sustained epidermal barrier perturbation with easier allergen penetration. In addition, PAR-2 is an important sensor for exogenous danger molecules, such as exogenous proteases from various allergens, and plays an important role in AD pathogenesis. Together, these findings suggest that protease activity or PAR-2 may be a future target for therapeutic intervention for the treatment of AD.

Keywords

References

  1. Richard I. The genetic and molecular bases of monogenic disorders affecting proteolytic systems. J Med Genet 2005;42: 529-39. https://doi.org/10.1136/jmg.2004.028118
  2. Ramachandran R, Hollenberg MD. Proteinases and signalling: pathophysiological and therapeutic implications via PARs and more. Br J Pharmacol 2008;153 Suppl 1:S263-82.
  3. Brattsand M, Egelrud T. Purification, molecular cloning, and expression of a human stratum corneum trypsin-like serine protease with possible function in desquamation. J Biol Chem 1999;274:30033-40. https://doi.org/10.1074/jbc.274.42.30033
  4. Hansson L, Stromqvist M, Backman A, Wallbrandt P, Carlstein A, Egelrud T. Cloning, expression, and characterization of stratum corneum chymotryptic enzyme. A skin-specific human serine proteinase. J Biol Chem 1994;269:19420-6.
  5. Bernard D, Mehul B, Thomas-Collignon A, Simonetti L, Remy V, Bernard MA, et al. Analysis of proteins with caseinolytic activity in a human stratum corneum extract revealed a yet unidentified cysteine protease and identified the so-called "stratum corneum thiol protease" as cathepsin l2. J Invest Dermatol 2003; 120:592-600. https://doi.org/10.1046/j.1523-1747.2003.12086.x
  6. Horikoshi T, Arany I, Rajaraman S, Chen SH, Brysk H, Lei G, et al. Isoforms of cathepsin D and human epidermal differentiation. Biochimie 1998;80:605-12. https://doi.org/10.1016/S0300-9084(98)80013-8
  7. Hachem JP, Houben E, Crumrine D, Man MQ, Schurer N, Roelandt T, et al. Serine protease signaling of epidermal permeability barrier homeostasis. J Invest Dermatol 2006;126:2074-86. https://doi.org/10.1038/sj.jid.5700351
  8. Rattenholl A, Steinhoff M. Role of proteinase-activated receptors in cutaneous biology and disease. Drug Dev Res 2003;59:408-16. https://doi.org/10.1002/ddr.10311
  9. Hansen KK, Oikonomopoulou K, Baruch A, Ramachandran R, Beck P, Diamandis EP, et al. Proteinases as hormones: targets and mechanisms for proteolytic signaling. Biol Chem 2008;389:971-82. https://doi.org/10.1515/BC.2008.120
  10. Rattenholl A, Steinhoff M. Proteinase-activated receptor-2 in the skin: receptor expression, activation and function during health and disease. Drug News Perspect 2008;21:369-81. https://doi.org/10.1358/dnp.2008.21.7.1255294
  11. Demerjian M, Hachem JP, Tschachler E, Denecker G, Declercq W, Vandenabeele P, et al. Acute modulations in permeability barrier function regulate epidermal cornification: role of caspase- 14 and the protease-activated receptor type 2. Am J Pathol 2008; 172:86-97. https://doi.org/10.2353/ajpath.2008.070161
  12. Jeong SK, Kim HJ, Youm JK, Ahn SK, Choi EH, Sohn MH, et al. Mite and cockroach allergens activate protease-activated receptor 2 and delay epidermal permeability barrier recovery. J Invest Dermatol 2008;128:1930-9. https://doi.org/10.1038/jid.2008.13
  13. Eissa A, Diamandis EP. Human tissue kallikreins as promiscuous modulators of homeostatic skin barrier functions. Biol Chem 2008;389:669-80. https://doi.org/10.1515/BC.2008.079
  14. Stefansson K, Brattsand M, Roosterman D, Kempkes C, Bocheva G, Steinhoff M, et al. Activation of proteinase-activated receptor- 2 by human kallikrein-related peptidases. J Invest Dermatol 2008;128:18-25. https://doi.org/10.1038/sj.jid.5700965
  15. Descargues P, Deraison C, Prost C, Fraitag S, Mazereeuw- Hautier J, D'Alessio M, et al. Corneodesmosomal cadherins are preferential targets of stratum corneum trypsin- and chymotrypsinlike hyperactivity in Netherton syndrome. J Invest Dermatol 2006;126:1622-32. https://doi.org/10.1038/sj.jid.5700284
  16. Komatsu N, Suga Y, Saijoh K, Liu AC, Khan S, Mizuno Y, et al. Elevated human tissue kallikrein levels in the stratum corneum and serum of peeling skin syndrome-type B patients suggests an over-desquamation of corneocytes. J Invest Dermatol 2006;126: 2338-42. https://doi.org/10.1038/sj.jid.5700379
  17. Komatsu N, Saijoh K, Kuk C, Liu AC, Khan S, Shirasaki F, et al. Human tissue kallikrein expression in the stratum corneum and serum of atopic dermatitis patients. Exp Dermatol 2007;16:513-9. https://doi.org/10.1111/j.1600-0625.2007.00562.x
  18. Komatsu N, Saijoh K, Kuk C, Shirasaki F, Takehara K, Diamandis EP. Aberrant human tissue kallikrein levels in the stratum corneum and serum of patients with psoriasis: dependence on phenotype, severity and therapy. Br J Dermatol 2007;156:875-83. https://doi.org/10.1111/j.1365-2133.2006.07743.x
  19. Lundwall A, Brattsand M. Kallikrein-related peptidases. Cell Mol Life Sci 2008;65:2019-38. https://doi.org/10.1007/s00018-008-8024-3
  20. Caubet C, Jonca N, Brattsand M, Guerrin M, Bernard D, Schmidt R, et al. Degradation of corneodesmosome proteins by two serine proteases of the kallikrein family, SCTE/KLK5/hK5 and SCCE/ KLK7/hK7. J Invest Dermatol 2004;122:1235-44. https://doi.org/10.1111/j.0022-202X.2004.22512.x
  21. Hachem JP, Man MQ, Crumrine D, Uchida Y, Brown BE, Rogiers V, et al. Sustained serine proteases activity by prolonged increase in pH leads to degradation of lipid processing enzymes and profound alterations of barrier function and stratum corneum integrity. J Invest Dermatol 2005;125:510-20. https://doi.org/10.1111/j.0022-202X.2005.23838.x
  22. Yamasaki K, Schauber J, Coda A, Lin H, Dorschner RA, Schechter NM, et al. Kallikrein-mediated proteolysis regulates the antimicrobial effects of cathelicidins in skin. FASEB J 2006;20:2068-80. https://doi.org/10.1096/fj.06-6075com
  23. Ekholm IE, Brattsand M, Egelrud T. Stratum corneum tryptic enzyme in normal epidermis: a missing link in the desquamation process? J Invest Dermatol 2000;114:56-63. https://doi.org/10.1046/j.1523-1747.2000.00820.x
  24. Brattsand M, Stefansson K, Lundh C, Haasum Y, Egelrud T. A proteolytic cascade of kallikreins in the stratum corneum. J Invest Dermatol 2005;124:198-203. https://doi.org/10.1111/j.0022-202X.2004.23547.x
  25. Elias PM, Cullander C, Mauro T, Rassner U, Komüves L, Brown BE, et al. The secretory granular cell: the outermost granular cell as a specialized secretory cell. J Investig Dermatol Symp Proc 1998;3:87-100. https://doi.org/10.1038/jidsymp.1998.20
  26. Yoon H, Laxmikanthan G, Lee J, Blaber SI, Rodriguez A, Kogot JM, et al. Activation profiles and regulatory cascades of the human kallikrein-related peptidases. J Biol Chem 2007;282:31852-64. https://doi.org/10.1074/jbc.M705190200
  27. Oikonomopoulou K, Hansen KK, Saifeddine M, Tea I, Blaber M, Blaber SI, et al. Proteinase-activated receptors, targets for kallikrein signaling. J Biol Chem 2006;281:32095-112. https://doi.org/10.1074/jbc.M513138200
  28. Komatsu N, Saijoh K, Toyama T, Ohka R, Otsuki N, Hussack G, et al. Multiple tissue kallikrein mRNA and protein expression in normal skin and skin diseases. Br J Dermatol 2005;153:274-81. https://doi.org/10.1111/j.1365-2133.2005.06754.x
  29. Kishibe M, Bando Y, Terayama R, Namikawa K, Takahashi H, Hashimoto Y, et al. Kallikrein 8 is involved in skin desquamation in cooperation with other kallikreins. J Biol Chem 2007;282: 5834-41.
  30. Morizane S, Yamasaki K, Kabigting FD, Gallo RL. Kallikrein expression and cathelicidin processing are independently controlled in keratinocytes by calcium, vitamin D(3), and retinoic acid. J Invest Dermatol 2010;130:1297-306. https://doi.org/10.1038/jid.2009.435
  31. Ovaere P, Lippens S, Vandenabeele P, Declercq W. The emerging roles of serine protease cascades in the epidermis. Trends Biochem Sci 2009;34:453-63. https://doi.org/10.1016/j.tibs.2009.08.001
  32. List K, Szabo R, Wertz PW, Segre J, Haudenschild CC, Kim SY, et al. Loss of proteolytically processed filaggrin caused by epidermal deletion of Matriptase/MT-SP1. J Cell Biol 2003;163:901-10. https://doi.org/10.1083/jcb.200304161
  33. Mitsudo K, Jayakumar A, Henderson Y, Frederick MJ, Kang Y, Wang M, et al. Inhibition of serine proteinases plasmin, trypsin, subtilisin A, cathepsin G, and elastase by LEKTI: a kinetic analysis. Biochemistry 2003;42:3874-81. https://doi.org/10.1021/bi027029v
  34. Roelandt T, Thys B, Heughebaert C, De Vroede A, De Paepe K, Roseeuw D, et al. LEKTI-1 in sickness and in health. Int J Cosmet Sci 2009;31:247-54. https://doi.org/10.1111/j.1468-2494.2009.00516.x
  35. Meyer-Hoffert U, Wu Z, Schroder JM. Identification of lymphoepithelial Kazal-type inhibitor 2 in human skin as a kallikreinrelated peptidase 5-specific protease inhibitor. PLoS One 2009;4: e4372. https://doi.org/10.1371/journal.pone.0004372
  36. Galliano MF, Toulza E, Gallinaro H, Jonca N, Ishida-Yamamoto A, Serre G, et al. A novel protease inhibitor of the alpha2-macroglobulin family expressed in the human epidermis. J Biol Chem 2006;281:5780-9.
  37. Oberst MD, Chen LY, Kiyomiya K, Williams CA, Lee MS, Johnson MD, et al. HAI-1 regulates activation and expression of matriptase, a membrane-bound serine protease. Am J Physiol Cell Physiol 2005;289:C462-70. https://doi.org/10.1152/ajpcell.00076.2005
  38. Oberst MD, Williams CA, Dickson RB, Johnson MD, Lin CY. The activation of matriptase requires its noncatalytic domains, serine protease domain, and its cognate inhibitor. J Biol Chem 2003;278:26773-9. https://doi.org/10.1074/jbc.M304282200
  39. Kawabata A. PAR-2: structure, function and relevance to human diseases of the gastric mucosa. Expert Rev Mol Med 2002;4:1-17.
  40. Steinhoff M, Corvera CU, Thoma MS, Kong W, McAlpine BE, Caughey GH, et al. Proteinase-activated receptor-2 in human skin: tissue distribution and activation of keratinocytes by mast cell tryptase. Exp Dermatol 1999;8:282-94.
  41. Steinhoff M, Neisius U, Ikoma A, Fartasch M, Heyer G, Skov PS, et al. Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J Neurosci 2003;23:6176-80.
  42. Scott G, Deng A, Rodriguez-Burford C, Seiberg M, Han R, Babiarz L, et al. Protease-activated receptor 2, a receptor involved in melanosome transfer, is upregulated in human skin by ultraviolet irradiation. J Invest Dermatol 2001;117:1412-20. https://doi.org/10.1046/j.0022-202x.2001.01575.x
  43. Dery O, Thoma MS, Wong H, Grady EF, Bunnett NW. Trafficking of proteinase-activated receptor-2 and beta-arrestin-1 tagged with green fluorescent protein. beta-Arrestin-dependent endocytosis of a proteinase receptor. J Biol Chem 1999;274:18524-35. https://doi.org/10.1074/jbc.274.26.18524
  44. Santulli RJ, Derian CK, Darrow AL, Tomko KA, Eckardt AJ, Seiberg M, et al. Evidence for the presence of a protease-activated receptor distinct from the thrombin receptor in human keratinocytes. Proc Natl Acad Sci U S A 1995;92:9151-5. https://doi.org/10.1073/pnas.92.20.9151
  45. Derian CK, Eckardt AJ, Andrade-Gordon P. Differential regulation of human keratinocyte growth and differentiation by a novel family of protease-activated receptors. Cell Growth Differ 1997; 8:743-9.
  46. Scott IR, Harding CR, Barrett JG. Histidine-rich protein of the keratohyalin granules. Source of the free amino acids, urocanic acid and pyrrolidone carboxylic acid in the stratum corneum. Biochim Biophys Acta 1982;719:110-7. https://doi.org/10.1016/0304-4165(82)90314-2
  47. McGrath JA, Uitto J. The filaggrin story: novel insights into skinbarrier function and disease. Trends Mol Med 2008;14:20-7. https://doi.org/10.1016/j.molmed.2007.10.006
  48. Denecker G, Hoste E, Gilbert B, Hochepied T, Ovaere P, Lippens S, et al. Caspase-14 protects against epidermal UVB photodamage and water loss. Nat Cell Biol 2007;9:666-74. https://doi.org/10.1038/ncb1597
  49. Resing KA, Thulin C, Whiting K, al-Alawi N, Mostad S. Characterization of profilaggrin endoproteinase 1. A regulated cytoplasmic endoproteinase of epidermis. J Biol Chem 1995;270: 28193-8. https://doi.org/10.1074/jbc.270.47.28193
  50. Yamazaki M, Ishidoh K, Suga Y, Saido TC, Kawashima S, Suzuki K, et al. Cytoplasmic processing of human profilaggrin by active mu-calpain. Biochem Biophys Res Commun 1997;235: 652-6. https://doi.org/10.1006/bbrc.1997.6809
  51. Pearton DJ, Nirunsuksiri W, Rehemtulla A, Lewis SP, Presland RB, Dale BA. Proprotein convertase expression and localization in epidermis: evidence for multiple roles and substrates. Exp Dermatol 2001;10:193-203. https://doi.org/10.1034/j.1600-0625.2001.010003193.x
  52. Leyvraz C, Charles RP, Rubera I, Guitard M, Rotman S, Breiden B, et al. The epidermal barrier function is dependent on the serine protease CAP1/Prss8. J Cell Biol 2005;170:487-96. https://doi.org/10.1083/jcb.200501038
  53. Netzel-Arnett S, Currie BM, Szabo R, Lin CY, Chen LM, Chai KX, et al. Evidence for a matriptase-prostasin proteolytic cascade regulating terminal epidermal differentiation. J Biol Chem 2006; 281:32941-5. https://doi.org/10.1074/jbc.C600208200
  54. Borgono CA, Michael IP, Komatsu N, Jayakumar A, Kapadia R, Clayman GL, et al. A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. J Biol Chem 2007; 282:3640-52.
  55. Deraison C, Bonnart C, Lopez F, Besson C, Robinson R, Jayakumar A, et al. LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pHdependent interaction. Mol Biol Cell 2007;18:3607-19. https://doi.org/10.1091/mbc.E07-02-0124
  56. Zeeuwen PL, Cheng T, Schalkwijk J. The biology of cystatin M/E and its cognate target proteases. J Invest Dermatol 2009; 129:1327-38. https://doi.org/10.1038/jid.2009.40
  57. Cheng T, Hitomi K, van Vlijmen-Willems IM, de Jongh GJ, Yamamoto K, Nishi K, et al. Cystatin M/E is a high affinity inhibitor of cathepsin V and cathepsin L by a reactive site that is distinct from the legumain-binding site. A novel clue for the role of cystatin M/E in epidermal cornification. J Biol Chem 2006; 281:15893-9. https://doi.org/10.1074/jbc.M600694200
  58. Cheng T, Tjabringa GS, van Vlijmen-Willems IM, Hitomi K, van Erp PE, Schalkwijk J, et al. The cystatin M/E-controlled pathway of skin barrier formation: expression of its key components in psoriasis and atopic dermatitis. Br J Dermatol 2009;161:253-64. https://doi.org/10.1111/j.1365-2133.2009.09156.x
  59. Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 2009;30:131-41. https://doi.org/10.1016/j.it.2008.12.003
  60. Aberg KM, Man MQ, Gallo RL, Ganz T, Crumrine D, Brown BE, et al. Co-regulation and interdependence of the mammalian epidermal permeability and antimicrobial barriers. J Invest Dermatol 2008;128:917-25. https://doi.org/10.1038/sj.jid.5701099
  61. Yamasaki K, Di Nardo A, Bardan A, Murakami M, Ohtake T, Coda A, et al. Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med 2007;13:975-80. https://doi.org/10.1038/nm1616
  62. Seeliger S, Derian CK, Vergnolle N, Bunnett NW, Nawroth R, Schmelz M, et al. Proinflammatory role of proteinase-activated receptor-2 in humans and mice during cutaneous inflammation in vivo. FASEB J 2003;17:1871-85. https://doi.org/10.1096/fj.02-1112com
  63. Iwakiri K, Ghazizadeh M, Jin E, Fujiwara M, Takemura T, Takezaki S, et al. Human airway trypsin-like protease induces PAR-2-mediated IL-8 release in psoriasis vulgaris. J Invest Dermatol 2004;122:937-44. https://doi.org/10.1111/j.0022-202X.2004.22415.x
  64. Feingold KR, Schmuth M, Elias PM. The regulation of permeability barrier homeostasis. J Invest Dermatol 2007;127:1574-6. https://doi.org/10.1038/sj.jid.5700774
  65. Denda M, Kitamura K, Elias PM, Feingold KR. trans-4- (Aminomethyl)cyclohexane carboxylic acid (T-AMCHA), an anti-fibrinolytic agent, accelerates barrier recovery and prevents the epidermal hyperplasia induced by epidermal injury in hairless mice and humans. J Invest Dermatol 1997;109:84-90. https://doi.org/10.1111/1523-1747.ep12276640
  66. Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N, et al. Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev 2005;26:1-43.
  67. Buddenkotte J, Stroh C, Engels IH, Moormann C, Shpacovitch VM, Seeliger S, et al. Agonists of proteinase-activated receptor-2 stimulate upregulation of intercellular cell adhesion molecule-1 in primary human keratinocytes via activation of NF-kappa B. J Invest Dermatol 2005;124:38-45. https://doi.org/10.1111/j.0022-202X.2004.23539.x
  68. Wakita H, Furukawa F, Takigawa M. Thrombin and trypsin induce granulocyte-macrophage colony-stimulating factor and interleukin-6 gene expression in cultured normal human keratinocytes. Proc Assoc Am Physicians 1997;109:190-207.
  69. Hou L, Kapas S, Cruchley AT, Macey MG, Harriott P, Chinni C, et al. Immunolocalization of protease-activated receptor-2 in skin: receptor activation stimulates interleukin-8 secretion by keratinocytes in vitro. Immunology 1998;94:356-62. https://doi.org/10.1046/j.1365-2567.1998.00528.x
  70. Kawagoe J, Takizawa T, Matsumoto J, Tamiya M, Meek SE, Smith AJ, et al. Effect of protease-activated receptor-2 deficiency on allergic dermatitis in the mouse ear. Jpn J Pharmacol 2002; 88:77-84. https://doi.org/10.1254/jjp.88.77
  71. Liu YJ, Soumelis V, Watanabe N, Ito T, Wang YH, Malefyt Rde W, et al. TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. Annu Rev Immunol 2007;25:193-219. https://doi.org/10.1146/annurev.immunol.25.022106.141718
  72. Yoo J, Omori M, Gyarmati D, Zhou B, Aye T, Brewer A, et al. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J Exp Med 2005;202:541-9. https://doi.org/10.1084/jem.20041503
  73. Ziegler SF, Liu YJ. Thymic stromal lymphopoietin in normal and pathogenic T cell development and function. Nat Immunol 2006;7:709-14.
  74. Briot A, Deraison C, Lacroix M, Bonnart C, Robin A, Besson C, et al. Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J Exp Med 2009;206:1135-47. https://doi.org/10.1084/jem.20082242
  75. Steinhoff M, Vergnolle N, Young SH, Tognetto M, Amadesi S, Ennes HS, et al. Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med 2000;6:151-8. https://doi.org/10.1038/72247
  76. Paus R, Schmelz M, Biro T, Steinhoff M. Frontiers in pruritus research: scratching the brain for more effective itch therapy. J Clin Invest 2006;116:1174-86. https://doi.org/10.1172/JCI28553
  77. Steinhoff M, Bienenstock J, Schmelz M, Maurer M, Wei E, Biro T. Neurophysiological, neuroimmunological, and neuroendocrine basis of pruritus. J Invest Dermatol 2006;126:1705-18. https://doi.org/10.1038/sj.jid.5700231
  78. Costa R, Marotta DM, Manjavachi MN, Fernandes ES, Lima- Garcia JF, Paszcuk AF, et al. Evidence for the role of neurogenic inflammation components in trypsin-elicited scratching behaviour in mice. Br J Pharmacol 2008;154:1094-103. https://doi.org/10.1038/bjp.2008.172
  79. Steinhoff M, Stander S, Seeliger S, Ansel JC, Schmelz M, Luger T. Modern aspects of cutaneous neurogenic inflammation. Arch Dermatol 2003;139:1479-88. https://doi.org/10.1001/archderm.139.11.1479
  80. Komatsu N, Tsai B, Sidiropoulos M, Saijoh K, Levesque MA, Takehara K, et al. Quantification of eight tissue kallikreins in the stratum corneum and sweat. J Invest Dermatol 2006;126:925-9.
  81. Amadesi S, Nie J, Vergnolle N, Cottrell GS, Grady EF, Trevisani M, et al. Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. J Neurosci 2004;24:4300-12. https://doi.org/10.1523/JNEUROSCI.5679-03.2004
  82. Vasilopoulos Y, Cork MJ, Murphy R, Williams HC, Robinson DA, Duff GW, et al. Genetic association between an AACC insertion in the 3'UTR of the stratum corneum chymotryptic enzyme gene and atopic dermatitis. J Invest Dermatol 2004;123: 62-6. https://doi.org/10.1111/j.0022-202X.2004.22708.x
  83. Hansson L, Backman A, Ny A, Edlund M, Ekholm E, Ekstrand Hammarstrom B, et al. Epidermal overexpression of stratum corneum chymotryptic enzyme in mice: a model for chronic itchy dermatitis. J Invest Dermatol 2002;118:444-9. https://doi.org/10.1046/j.0022-202x.2001.01684.x
  84. Walley AJ, Chavanas S, Moffatt MF, Esnouf RM, Ubhi B, Lawrence R, et al. Gene polymorphism in Netherton and common atopic disease. Nat Genet 2001;29:175-8. https://doi.org/10.1038/ng728
  85. Magert HJ, Standker L, Kreutzmann P, Zucht HD, Reinecke M, Sommerhoff CP, et al. LEKTI, a novel 15-domain type of human serine proteinase inhibitor. J Biol Chem 1999;274:21499-502. https://doi.org/10.1074/jbc.274.31.21499
  86. Hachem JP, Wagberg F, Schmuth M, Crumrine D, Lissens W, Jayakumar A, et al. Serine protease activity and residual LEKTI expression determine phenotype in Netherton syndrome. J Invest Dermatol 2006;126:1609-21. https://doi.org/10.1038/sj.jid.5700288
  87. Descargues P, Deraison C, Bonnart C, Kreft M, Kishibe M, Ishida-Yamamoto A, et al. Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nat Genet 2005;37:56-65.
  88. Bonnart C, Deraison C, Lacroix M, Uchida Y, Besson C, Robin A, et al. Elastase 2 is expressed in human and mouse epidermis and impairs skin barrier function in Netherton syndrome through filaggrin and lipid misprocessing. J Clin Invest 2010;120:871-82. https://doi.org/10.1172/JCI41440
  89. Kato A, Fukai K, Oiso N, Hosomi N, Murakami T, Ishii M. Association of SPINK5 gene polymorphisms with atopic dermatitis in the Japanese population. Br J Dermatol 2003;148:665-9. https://doi.org/10.1046/j.1365-2133.2003.05243.x
  90. Vasilopoulos Y, Cork MJ, Teare D, Marinou I, Ward SJ, Duff GW, et al. A nonsynonymous substitution of cystatin A, a cysteine protease inhibitor of house dust mite protease, leads to decreased mRNA stability and shows a significant association with atopic dermatitis. Allergy 2007;62:514-9. https://doi.org/10.1111/j.1398-9995.2007.01350.x
  91. Mauro T. SC pH: measurement, origins, and functions. In: Eilas P, Feingold K, editors. Skin Barrier. New York: Taylor & Francis Group; 2006. p.223-30.
  92. Fluhr JW, Behne MJ, Brown BE, Moskowitz DG, Selden C, Mao-Qiang M, et al. Stratum corneum acidification in neonatal skin: secretory phospholipase A2 and the sodium/hydrogen antiporter- 1 acidify neonatal rat stratum corneum. J Invest Dermatol 2004;122:320-9. https://doi.org/10.1046/j.0022-202X.2003.00204.x
  93. Schmid-Wendtner MH, Korting HC. The pH of the skin surface and its impact on the barrier function. Skin Pharmacol Physiol 2006;19:296-302. https://doi.org/10.1159/000094670
  94. Rippke F, Schreiner V, Doering T, Maibach HI. Stratum corneum pH in atopic dermatitis: impact on skin barrier function and colonization with Staphylococcus Aureus. Am J Clin Dermatol 2004;5:217-23. https://doi.org/10.2165/00128071-200405040-00002
  95. Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 2006;38:441-6. https://doi.org/10.1038/ng1767
  96. O'Regan GM, Sandilands A, McLean WH, Irvine AD. Filaggrin in atopic dermatitis. J Allergy Clin Immunol 2008;122:689- 93. https://doi.org/10.1016/j.jaci.2008.08.002
  97. Fluhr JW, Elias PM, Man MQ, Hupe M, Selden C, Sundberg JP, et al. Is the filaggrin-histidine-urocanic acid pathway essential for stratum corneum acidification? J Invest Dermatol 2010; 130:2141-4. https://doi.org/10.1038/jid.2010.74
  98. Roelandt T, Heughebaert C, Hachem JP. Proteolytically active allergens cause barrier breakdown. J Invest Dermatol 2008;128: 1878-80. https://doi.org/10.1038/jid.2008.168
  99. Kato T, Takai T, Fujimura T, Matsuoka H, Ogawa T, Murayama K, et al. Mite serine protease activates protease-activated receptor-2 and induces cytokine release in human keratinocytes. Allergy 2009;64:1366-74. https://doi.org/10.1111/j.1398-9995.2009.02023.x
  100. Hirasawa Y, Takai T, Nakamura T, Mitsuishi K, Gunawan H, Suto H, et al. Staphylococcus aureus extracellular protease causes epidermal barrier dysfunction. J Invest Dermatol 2010;130:614-7. https://doi.org/10.1038/jid.2009.257
  101. Ohnemus U, Kohrmeyer K, Houdek P, Rohde H, Wladykowski E, Vidal S, et al. Regulation of epidermal tight-junctions (TJ) during infection with exfoliative toxin-negative Staphylococcus strains. J Invest Dermatol 2008;128:906-16. https://doi.org/10.1038/sj.jid.5701070
  102. Wan H, Winton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ, et al. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest 1999;104: 123-33. https://doi.org/10.1172/JCI5844
  103. Runswick S, Mitchell T, Davies P, Robinson C, Garrod DR. Pollen proteolytic enzymes degrade tight junctions. Respirology 2007;12:834-42. https://doi.org/10.1111/j.1440-1843.2007.01175.x
  104. Kawabata A, Kawao N. Physiology and pathophysiology of proteinase-activated receptors (PARs): PARs in the respiratory system: cellular signaling and physiological/pathological roles. J Pharmacol Sci 2005;97:20-4. https://doi.org/10.1254/jphs.FMJ04005X4
  105. Ferrell WR, Lockhart JC, Kelso EB, Dunning L, Plevin R, Meek SE, et al. Essential role for proteinase-activated receptor-2 in arthritis. J Clin Invest 2003;111:35-41.
  106. Hyun E, Andrade-Gordon P, Steinhoff M, Vergnolle N. Protease- activated receptor-2 activation: a major actor in intestinal inflammation. Gut 2008;57:1222-9. https://doi.org/10.1136/gut.2008.150722
  107. Kim H, Jeong S, Jeong M, Ahn J, Moon S, Lee S. The relationship of PAR2 and pruritus in end stage renal disease patients and the clinical effectiveness of soybean extracts containing moisturizer on epidermal permeability barrier in end stage renal disease patients. J Invest Dermatol 2010;130:S56.
  108. Akiyama T, Carstens MI, Carstens E. Enhanced scratching evoked by PAR-2 agonist and 5-HT but not histamine in a mouse model of chronic dry skin itch. Pain 2010 Aug 13. (Epub ahead of print).
  109. Kelso EB, Lockhart JC, Hembrough T, Dunning L, Plevin R, Hollenberg MD, et al. Therapeutic promise of proteinase-activated receptor-2 antagonism in joint inflammation. J Pharmacol Exp Ther 2006;316:1017-24.
  110. Kelso EB, Ferrell WR, Lockhart JC, Elias-Jones I, Hembrough T, Dunning L, et al. Expression and proinflammatory role of proteinase-activated receptor 2 in rheumatoid synovium: ex vivo studies using a novel proteinase-activated receptor 2 antagonist. Arthritis Rheum 2007;56:765-71. https://doi.org/10.1002/art.22423
  111. Kanke T, Kabeya M, Kubo S, Kondo S, Yasuoka K, Tagashira J, et al. Novel antagonists for proteinase-activated receptor 2: inhibition of cellular and vascular responses in vitro and in vivo. Br J Pharmacol 2009;158:361-71. https://doi.org/10.1111/j.1476-5381.2009.00342.x
  112. Goh FG, Ng PY, Nilsson M, Kanke T, Plevin R. Dual effect of the novel peptide antagonist K-14585 on proteinase-activated receptor-2-mediated signalling. Br J Pharmacol 2009;158:1695- 704. https://doi.org/10.1111/j.1476-5381.2009.00415.x

Cited by

  1. The itchy scalp – scratching for an explanation vol.20, pp.12, 2010, https://doi.org/10.1111/j.1600-0625.2011.01389.x
  2. Role of fatty acid transporters in epidermis : Implications for health and disease vol.3, pp.2, 2011, https://doi.org/10.4161/derm.3.2.14816
  3. Orchestrating house dust mite-associated allergy in the lung vol.32, pp.9, 2010, https://doi.org/10.1016/j.it.2011.06.006
  4. What's new concerning pruritus? vol.52, pp.3, 2010, https://doi.org/10.1016/j.reval.2012.01.007
  5. Bradykinin-evoked scratching responses in complete Freund's adjuvant-inflamed skin through activation of B1 receptor vol.237, pp.3, 2010, https://doi.org/10.1258/ebm.2011.011308
  6. Resistin-Like Molecule-α Regulates IL-13-Induced Chemokine Production but Not Allergen-Induced Airway Responses vol.46, pp.5, 2012, https://doi.org/10.1165/rcmb.2011-0391oc
  7. House Dust Mite Allergy in Korea: The Most Important Inhalant Allergen in Current and Future vol.4, pp.6, 2012, https://doi.org/10.4168/aair.2012.4.6.313
  8. Female‐specific pruritus from childhood to postmenopause: clinical features, hormonal factors, and treatment considerations vol.26, pp.2, 2013, https://doi.org/10.1111/dth.12034
  9. Fixing the skin barrier: past, present and future – man and dog compared vol.24, pp.1, 2010, https://doi.org/10.1111/j.1365-3164.2012.01073.x
  10. Mediators of Pruritus in Lichen Planus vol.2013, pp.None, 2010, https://doi.org/10.1155/2013/941431
  11. Allergen Recognition by Innate Immune Cells: Critical Role of Dendritic and Epithelial Cells vol.4, pp.None, 2010, https://doi.org/10.3389/fimmu.2013.00356
  12. Safety and efficacy of topical E6005, a phosphodiesterase 4 inhibitor, in Japanese adult patients with atopic dermatitis: Results of a randomized, vehicle‐controlled, multicenter clinical trial vol.41, pp.7, 2010, https://doi.org/10.1111/1346-8138.12534
  13. In vitro approaches to pharmacological screening in the field of atopic dermatitis vol.170, pp.suppl1, 2010, https://doi.org/10.1111/bjd.13106
  14. Cathepsin S, a new pruritus biomarker in clinical dandruff/seborrhoeic dermatitis evaluation vol.23, pp.4, 2014, https://doi.org/10.1111/exd.12357
  15. Evaluation on Potential Contributions of Protease Activated Receptors Related Mediators in Allergic Inflammation vol.2014, pp.None, 2010, https://doi.org/10.1155/2014/829068
  16. A Study of single nucleotide polymorphism fragments of the aur gene metalloprotease strains of Straphylococcus aureus isolated from the skin of patients with atopic dermatitis vol.29, pp.1, 2010, https://doi.org/10.3103/s0891416814010078
  17. Proteinase activated-receptors-associated signaling in the control of gastric cancer vol.20, pp.34, 2014, https://doi.org/10.3748/wjg.v20.i34.11977
  18. Epidermal Permeability Barrier Defects and Barrier Repair Therapy in Atopic Dermatitis vol.6, pp.4, 2010, https://doi.org/10.4168/aair.2014.6.4.276
  19. Panduratin A, an activator of PPAR-α/δ, suppresses the development of oxazolone-induced atopic dermatitis-like symptoms in hairless mice vol.100, pp.1, 2014, https://doi.org/10.1016/j.lfs.2014.01.076
  20. Itch Mechanisms and Circuits vol.43, pp.None, 2014, https://doi.org/10.1146/annurev-biophys-051013-022826
  21. Topical acidic cream prevents the development of atopic dermatitis‐ and asthma‐like lesions in murine model vol.23, pp.10, 2010, https://doi.org/10.1111/exd.12525
  22. Epidermal Expression of Filaggrin/Profilaggrin Is Decreased in Atopic Dermatitis : Reverse Association With Mast Cell Tryptase and IL-6 but Not With Clinical Severity vol.26, pp.6, 2015, https://doi.org/10.1097/der.0000000000000143
  23. Topical tranexamic acid improves the permeability barrier in rosacea vol.33, pp.2, 2010, https://doi.org/10.1016/j.dsi.2015.04.012
  24. First report in a dog model of atopic dermatitis: expression patterns of protease‐activated receptor‐2 and thymic stromal lymphopoietin vol.26, pp.3, 2010, https://doi.org/10.1111/vde.12203
  25. Protease-activated receptors and their biological role-focused on skin inflammation vol.67, pp.12, 2010, https://doi.org/10.1111/jphp.12447
  26. The effect of kinin B1 receptor on chronic itching sensitization vol.11, pp.1, 2010, https://doi.org/10.1186/s12990-015-0070-x
  27. Skin Barrier Recovery by Protease-Activated Receptor-2 Antagonist Lobaric Acid vol.24, pp.5, 2016, https://doi.org/10.4062/biomolther.2016.011
  28. Physical and biochemical characteristics of allergens vol.4, pp.3, 2016, https://doi.org/10.4168/aard.2016.4.3.157
  29. House Dust Mite Allergen Inhibits Constitutive Neutrophil Apoptosis by Cytokine Secretion via PAR2/PKCδ/p38 MAPK Pathway in Allergic Lymphocytes vol.48, pp.3, 2010, https://doi.org/10.15324/kjcls.2016.48.3.188
  30. Distribution and factors associated with salivary secretory leukocyte protease inhibitor concentrations vol.22, pp.8, 2010, https://doi.org/10.1111/odi.12550
  31. Anti-inflammatory and immunomodulatory effects of Aquaphilus dolomiae extract on in vitro models vol.9, pp.None, 2010, https://doi.org/10.2147/ccid.s113180
  32. Opportunities for therapeutic antibodies directed at G-protein-coupled receptors vol.16, pp.11, 2017, https://doi.org/10.1038/nrd.2017.91
  33. Adult-onset acne: prevalence, impact, and management challenges vol.11, pp.None, 2010, https://doi.org/10.2147/ccid.s137794
  34. Anti-Atopic Dermatitis of Purified Bee Venom on Keratinocytes Via Suppression of PAR2, ICAM-1, and IL-6 Expression vol.62, pp.2, 2018, https://doi.org/10.2478/jas-2018-0016
  35. Pruritus in Autoimmune and Inflammatory Dermatoses vol.10, pp.None, 2019, https://doi.org/10.3389/fimmu.2019.01303
  36. Multifunctional chitosan-coated poly(lactic-co-glycolic acid) nanoparticles for spatiotemporally controlled codelivery of ceramide and C-phycocyanin to treat atopic dermatitis vol.34, pp.2, 2019, https://doi.org/10.1177/0883911519827973
  37. Update on protease‐activated receptor 2 in cutaneous barrier, differentiation, tumorigenesis and pigmentation, and its role in related dermatologic diseases vol.28, pp.8, 2019, https://doi.org/10.1111/exd.13936
  38. Breaking the Itch-Scratch Cycle: Topical Options for the Management of Chronic Cutaneous Itch in Atopic Dermatitis vol.6, pp.3, 2010, https://doi.org/10.3390/medicines6030076
  39. House dust mite‐treated PAR2 over‐expressor mouse: A novel model of atopic dermatitis vol.28, pp.11, 2010, https://doi.org/10.1111/exd.14030
  40. Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases vol.17, pp.None, 2010, https://doi.org/10.1186/s12959-019-0194-8
  41. Protease-Activated Receptor-2 Regulates Neuro-Epidermal Communication in Atopic Dermatitis vol.11, pp.None, 2010, https://doi.org/10.3389/fimmu.2020.01740
  42. Carbon dioxide ameliorates reduced desquamation in dry scaly skin via protease activation vol.42, pp.6, 2010, https://doi.org/10.1111/ics.12641
  43. Involvement of Neuro-Immune Interactions in Pruritus With Special Focus on Receptor Expressions vol.8, pp.None, 2010, https://doi.org/10.3389/fmed.2021.627985
  44. Vulvar Pruritus: A Review of Clinical Associations, Pathophysiology and Therapeutic Management vol.8, pp.None, 2010, https://doi.org/10.3389/fmed.2021.649402
  45. Topical application with conjugated linoleic acid ameliorates 2, 4‐dinitrofluorobenzene‐induced atopic dermatitis‐like lesions in BALB/c mice vol.30, pp.2, 2010, https://doi.org/10.1111/exd.14242
  46. 황금추출물의 지방장벽 생성을 통한 염증완화 효과 vol.35, pp.1, 2010, https://doi.org/10.7778/jpkm.2021.35.1.40
  47. The Constitutive Extracellular Protein Release by Acute Myeloid Leukemia Cells-A Proteomic Study of Patient Heterogeneity and Its Modulation by Mesenchymal Stromal Cells vol.13, pp.7, 2010, https://doi.org/10.3390/cancers13071509
  48. Hereditary Alpha-Tryptasemia: a Commonly Inherited Modifier of Anaphylaxis vol.21, pp.5, 2021, https://doi.org/10.1007/s11882-021-01010-1
  49. Immunological Aspects of Skin Aging in Atopic Dermatitis vol.22, pp.11, 2010, https://doi.org/10.3390/ijms22115729
  50. The Implications of Pruritogens in the Pathogenesis of Atopic Dermatitis vol.22, pp.13, 2021, https://doi.org/10.3390/ijms22137227
  51. Thymic stromal lymphopoietin induces adipose loss through sebum hypersecretion vol.373, pp.6554, 2010, https://doi.org/10.1126/science.abd2893
  52. Topical Administration of Melatonin-Loaded Extracellular Vesicle-Mimetic Nanovesicles Improves 2,4-Dinitrofluorobenzene-Induced Atopic Dermatitis vol.11, pp.10, 2010, https://doi.org/10.3390/biom11101450
  53. Connections between Immune-Derived Mediators and Sensory Nerves for Itch Sensation vol.22, pp.22, 2021, https://doi.org/10.3390/ijms222212365