DOI QR코드

DOI QR Code

Optimal Design of Magnetically Levitated Flywheel Energy Storage System Based on System Stability Using Rigid-Body Model

강체모델 기반 시스템 안정성을 고려한 자기부상 플라이휠 에너지 저장장치의 최적 설계

  • Kim, Jung-Wan (Dept. of Mechatronics Engineering, Chungnam Nat'l Univ.) ;
  • Yoo, Seong-Yeol (Dept. of Mechatronics Engineering, Chungnam Nat'l Univ.) ;
  • Bae, Yong-Chae (Power Generation Laboratory, Korea Electric Power Research Institute) ;
  • Noh, Myoung-Gyu (Dept. of Mechatronics Engineering, Chungnam Nat'l Univ.)
  • 김정완 (충남대학교 메카트로닉스공학과) ;
  • 유승열 (충남대학교 메카트로닉스공학과) ;
  • 배용채 (한국전력 전력연구원 수화력발전연구소) ;
  • 노명규 (충남대학교 메카트로닉스공학과)
  • Published : 2010.03.01

Abstract

Owing to the increasing worldwide interest in green technology and renewable energy sources, flywheel energy storage systems (FESSs) are gaining importance as a viable alternative to traditional battery systems. Since the energy storage capacity of an FESS is proportional to the principal mass-moment of inertia and the square of the running speed, a design that maximizes the principal inertia while operatingrunning at the highest possible speed is important. However, the requirements for the stability of the system may impose a constraint on the optimal design. In this paper, an optimal design of an FESS that not only maximizes the energy capacity but also satisfies the requirements for system stability and reduces the sensitivity to external disturbances is proposed. Cross feedback control in combination with a conventional proportional-derivative (PD) controller is essential to reduce the effect of gyroscopic coupling and to increase the stored energy and the specific energy density.

친환경기술과 신재생 에너지 자원에 대한 세계적인 관심이 증가하면서, 플라이휠 에너지 저장 장치는 화학전지나 연료전지와 같은 기존의 에너지 저장 시스템의 대안 중 하나로 부상하고 있다. 플라이휠 에너지 저장장치의 에너지 저장 용량은 극질량 관성모멘트와 회전속도의 제곱에 비례하기 때문에, 가능한 높은 회전속도와 높은 극질량 관성모멘트를 갖도록 설계하는 것이 중요하다. 하지만, 시스템의 운전안정성 확보가 최적설계의 구속조건으로 작용할 수 있다. 본 논문에서는 에너지 저장 용량을 최대화하고 운전안정성 및 외란에 대한 강인성을 확보하는 플라이휠 시스템의 최적설계를 제안한다. 그리고, 기존의 PD 제어에 비교하여 교차궤환제어법이 자이로스코프효과를 줄이고, 에너지 저장밀도를 높이는데 필수적임을 확인하였다.

Keywords

References

  1. Yoo, S., Park, C., Choi, S., et. al., 2008, "Validation of Flexible Rotor Model for a Large Capacity Flywheel Energy Storage System,” Transactions of the KSME A, Vol. 32, No. 12, pp.1096-1101. https://doi.org/10.3795/KSME-A.2008.32.12.1096
  2. Koshizuka, N., Ishikawa, F., Nasu, H., et. al., 2002, "Present Status of R & D on Superconducting Magnetic Bearing Technologies for Flywheel Energy Storage System," Physica C-Superconductivity and Its Applications, Vol. 378, pp. 11-17. https://doi.org/10.1016/S0921-4534(02)01374-6
  3. Lei, S. and Palazzolo, A., 2008 ,“Control of Flexible Rotor Systems with Active Magnetic Bearings,” J. Sound and Vibration, Vol. 314, pp. 19-38. https://doi.org/10.1016/j.jsv.2007.12.028
  4. Dunn-Rankin, D., Leal, E. M. and Walther, D. C., 2005 ,“Personal Power System,” Progress in Energy and Combustion Science, Vol. 31, pp. 422-465. https://doi.org/10.1016/j.pecs.2005.04.001
  5. Murakami, K., Komori, M., Mitsuda, H. and Inoue, A., 2007, “Design of an Energy Storage Flywheel System Using Permanent Magnet Bearing (PMB) and Superconducting Magnetic Bearing(SMB),” Cryogenics, Vol. 37, pp. 272-277.
  6. Kim, D., Lee, D., Choi, S. and Ha, S., 1998, "Optimal Design of Hybrid Composite Flywheel Rotor" Journal of KSME, Vol. 22, pp. 1287-1298
  7. Palm, W. J., 2007, Mechanical Vibration, John Wiley &Sons.
  8. Maslen, V. E. H. and Meeker, D. C., 1995, “Fault Tolerance of Magnetic Bearings by Generalized Bias Current Linearization,” IEEE Trans. Magnetics, Vol. 31, pp. 2304-2314, May. https://doi.org/10.1109/20.376229
  9. Ahrens, M., Kucera, L. and Larsonneur, R., 1996 “Performance of a Magnetically Suspended Flywheel Energy Storage Device,” IEEE Trans. Control Sys. Tech., Vol. 4, No. 5, pp. 494-502. https://doi.org/10.1109/87.531916
  10. Li, G., Maslen, E. H. and Allaire, P. E., 2006, “A Noteon ISO AMB Stability Margin,” 10th InternationalSymposium on Magnetic Bearings, Martigny, Switzerland.