DOI QR코드

DOI QR Code

Seasonal Variation of Surface Sediments in the Dongho Beach, Gochang-gun, Korea

고창군 동호 해빈 표층 퇴적물의 계절 변화

  • So, Kwang-Suk (Division of Science Education/Institute of Fusion Science/Institute of Science Education, Chonbuk National University) ;
  • Ryang, Woo-Hun (Division of Science Education/Institute of Fusion Science/Institute of Science Education, Chonbuk National University) ;
  • Kang, Sol-Ip (Division of Science Education/Institute of Fusion Science/Institute of Science Education, Chonbuk National University) ;
  • Kwon, Yi-Kyun (Petroleum and Marine Resources Division, Korea Institute of Geoscience and Mining Resources (KIGAM))
  • 소광석 (전북대학교 과학교육학부/융합과학연구소/과학교육연구소) ;
  • 양우헌 (전북대학교 과학교육학부/융합과학연구소/과학교육연구소) ;
  • 강솔잎 (전북대학교 과학교육학부/융합과학연구소/과학교육연구소) ;
  • 권이균 (한국지질자원연구원 석유해저자원연구부)
  • Received : 2010.08.11
  • Accepted : 2010.11.18
  • Published : 2010.12.31

Abstract

The Gochang-gun Dongho macro-tide pocket-type beach, located on the southwestern coast of Korea, is investigated in terms of the seasonal variations of surface sediment and sedimentary environment. Surface sediments of 45 sites in four seasons (May 2006-February 2007) are sampled across three survey lines (15 sites in each survey line). The surface sediments of the Dongho Beach are mainly composed of fine to coarse sands, and the ratio of fine sand is the largest. The average of grain size is the coarsest in the summer. The spatial distribution of surface sediments shows a coast-parallel band of fine and medium sands during three seasons of spring, fall, and winter, whereas medium sands dominated in the northern part of the study area during the summer. These results suggest that a tide is more effective than a wave in the surface sediments of the Dongho Beach during the summer.

한반도 서남해안의 고창군 동호 포켓형 대조차 해빈에서 계절에 따른 퇴적물 조직과 퇴적 환경 변화를 연구하였다. 표층 퇴적물은 3개 측선의 45지점(각 측선 당 15개 지점)에서 4계절(2006년 5월-2007년 2월) 동안 각각 채취하였다. 동호 해빈의 표층 퇴적물은 세립사, 중립사, 조립사로 대부분 구성되어 있으며, 함량비는 세립사가 가장 크다. 평균 입도는 여름에 가장 조립하게 나타난다. 표층 퇴적물의 공간분포는 봄, 가을, 겨울의 세 계절에 세립사와 중립사가 해안선과 평행한 띠 모양으로 나타나는 반면, 여름에는 중립사가 연구지역의 북쪽 부분에 우세하게 나타난다. 여름 동호 해빈의 표층 퇴적물에 미치는 영향은 조석이 파랑보다 효과적인 것으로 추정된다.

Keywords

References

  1. 김진호, 1996, 한국 서해 함평만 현세 조수퇴적층과 선현세 퇴적층의 층서적 연구. 서울대학교 석사학위 논문, 143 p.
  2. 류상옥, 장진호, 2005. 한반도 서해 천수만의 해안선 변화 및 조간대 해빈 특성. 한국지구과학회지, 26, 584-596.
  3. 박태임, 2008, 원격탐사를 이용한 서해안 동호-구시포 조간대의 지형변화 연구. 전북대학교 석사학위 논문, 45 p.
  4. 백영숙, 2002, 한국 서남해안 염산 조간대의 표층 퇴적물 특성 및 퇴적상의 계절변화. 전남대학교 석사학위 논문, 76 p.
  5. 소광석, 양우헌, 권이균, 2009, 고창군 명사십리 조간대 표층 퇴적물의 계절변화. 한국해양학회지, 14, 181-188.
  6. 신기재, 1992, 동, 서해안 해빈의 퇴적작용에 관한 연구. 인하대학교 석사학위 논문, 59 p.
  7. 오재경, 금병철, 2002, 대조차환경 침식연안의 퇴적학적 특성. 한국지구과학회지, 23, 565-574.
  8. 오재경, 도종대, 조용구, 2006, 강화도 장화리 조간대의 퇴적특성. 한국지구과학회지, 27, 328-340.
  9. 오재경, 왕경희, 신기재, 1994, 동서해안 해빈의 퇴적 환경에 관한 연구. 한국지구과학회지, 15, 91-99.
  10. 오재경, 한창희, 2010, 서해안 안면도 사질 조석대의 퇴적환경. 한국지구과학회지, 31, 139-150. https://doi.org/10.5467/JKESS.2010.31.2.139
  11. 왕경희, 1993, 을왕리 해빈에서 태풍에 의한 퇴적환경 변화에 관한 연구. 인하대학교 석사학위논문, 30 p.
  12. 이병주, 이승렬, 2001, 고창도폭 지질조사 보고서. 한국지질자원연구원, 43 p.
  13. 정선미, 2006, 한반도 동해의 자연해빈과 개발해빈의 퇴적환경에 관한 연구. 인하대학교 석사학위논문, 52 p.
  14. 최강원, 1987, 한국 서해안(경기만, 아산만) 조간대 퇴적층의 층서, 퇴적학적 연구. 서울대학교 석사학위 논문, 70 p.
  15. Alexander, C.R., Nittrouer, C.A., DeMaster, D.J., Park, Y.A., and Park, S.C., 1991, Macrotidal mudflats of the southwestern Korean coast: A model for interpretation of intertidal deposits. Journal of Sedimentary Petrology, 61, 805-824.
  16. Bloom, A.C. and Park, Y.A., 1985, Holocene sea-level history and tectonic movement. Republic of Korea. Quaternary Research, 24, 77-84. https://doi.org/10.4116/jaqua.24.77
  17. Blott, S., 2000, GRADISTAT Version 4.0: A grain size distribution and statistics package for the analysis of unconsolidated sediments by sieving or laser granulometer. Instructions on the use of the GRADISTAT program. 5 p.
  18. Chough, S.K., Lee, H.J., and Yoon, S.H., 2000, Marine Geology of Korean Seas. Elsevier, Amsterdam, Netherlands, 313 p.
  19. Corbau, C., Tessier, B., and Chamley, H., 1999, Seasonal evolution of shoreface and beach system morphology in a macrotidal environment, Dunkerque Area, Northern France. Journal of Coastal Research, 15, 97-110.
  20. Folk, R.L. and Ward, W.C., 1957, Brazos River bar: A study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27, 3-26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  21. Frey, R.W., Howard, J.D., and Dorjes, J., 1989, Coastal sediments and patterns of bioturbation, eastern Buzzard Bay, Messachusetts. Journal of Sedimentary Petrology, 59, 1022-1035.
  22. Hails, J.R., 1967, Significance of statistical parameters for distinguishing sedimentary environments in New South Wales, Australia. Journal of Sedimentary Petrology, 37, 1059-1069.
  23. Korea Meteorological Administration, 2006 and 2007, http://www.kma.go.kr/sfc/sfc_03_02.jsp 기후자료/과거자료 검색.
  24. Korea National Oceanographic Research Institute, 2009, http://mdc.nori.go.kr/tide/data/tide_data/비조화상수(위도).
  25. McLaren, P. and Bowles, D., 1985, The effects of sediment transport on grain-size distribution. Journal of Sedimentary Petrology, 55, 457-470.
  26. Orton, J.G. and Reading, H.G., 1993, Variability of deltaic processes in terms of sediment supply with particular emphasis on grain size. Sedimentology, 40, 475-512. https://doi.org/10.1111/j.1365-3091.1993.tb01347.x
  27. Reading, H.G. and Collinson, J.D., 1996, Clastic coasts. In Reading, H.G. (ed.), Sedimentary environments: Processes, facies and stratigraphy. Blackwell, MA, USA, 154-231.
  28. Ryu, S.O., 2003, Seasonal variation of sedimentary process in a semi-enclosed bay: Hampyoung Bay, Korea. Estuarine, Coastal and Shelf Sciences, 56, 481-492. https://doi.org/10.1016/S0272-7714(02)00199-3
  29. Trask, C.B. and Hand, B.M., 1985, Differential transport of fall-equivalent sand grains, Lake Ontario. Journal of Sedimentary Petrology, 55, 226-234.
  30. Udden, J.A., 1914, Mechanical composition of clastic sediments. Bulletin of Geological Society of America, 25, 655-744. https://doi.org/10.1130/GSAB-25-655
  31. Visher, G.S., 1969, Grain size distributions and depositional processes. Journal of Sedimentary Petrology, 39, 1074-1106.
  32. Wentworth, C.K., 1922, A scale of grade and class terms for clastic sediments. Journal of Geology, 30, 377-392. https://doi.org/10.1086/622910
  33. Yang, B.C. and Chun, S.S., 2001, A Seasonal model of surface sedimentation on the Baeksu open-coast intertidal flat, southwestern coast of Korea. Geosciences Journal, 5, 251-262. https://doi.org/10.1007/BF02910308
  34. Yang, B.C., Dalrymple, R.W., and Chun, S.S., 2005, Sedimentation on a wave-dominated, open-coast tidal flat, southwestern Korea: Summer tidal flat-winter shoreface. Sedimentology, 52, 235-252. https://doi.org/10.1111/j.1365-3091.2004.00692.x
  35. Yang, B.C., Dalrymple, R.W., Chun, S.S., and Lee, H.J., 2006, Transgressive sedimentation and stratigraphic evolution of a wave-dominated macrotidal coast, western Korea. Marine Geology, 235, 35-48. https://doi.org/10.1016/j.margeo.2006.10.003

Cited by

  1. Burial Age and Flooding-origin Characteristics of Coastal Deposits at Gwangseungri, Gochanggun, Korea vol.36, pp.3, 2015, https://doi.org/10.5467/JKESS.2015.36.3.222
  2. Characteristics of Surface Topography Variation on the Gochang Beach,Southwestern Coast of Korea vol.36, pp.6, 2015, https://doi.org/10.5467/JKESS.2015.36.6.533
  3. Seasonal Variation of Surface Sediments in 2014 on the Gochang Open-Coast Intertidal Flat, Southwestern Korea vol.37, pp.2, 2016, https://doi.org/10.5467/JKESS.2016.37.2.89