DOI QR코드

DOI QR Code

Temporal and Spatial Distributions of Solar Radiation with Surface Pyranometer Data in South Korea

일사 관측 자료에 의한 남한의 태양복사 시공간 분포

  • Jee, Joon-Bum (Research Institute of Natural Sciences, Gangneung-Wonju National University) ;
  • Kim, Yeong-Do (Korea Climate Change & Energy Institute) ;
  • Lee, Won-Hak (Research Institute of Gangwon Development) ;
  • Lee, Kyu-Tae (Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University)
  • 지준범 (강릉원주대학교 자연과학연구소) ;
  • 김영도 (한국기후변화에너지연구소) ;
  • 이원학 (강원발전연구원) ;
  • 이규태 (강릉원주대학교 대기환경과학과)
  • Received : 2010.08.11
  • Accepted : 2010.11.18
  • Published : 2010.12.31

Abstract

This study is to analyze the temporal and spatial distributions of solar radiation in South Korea. Solar radiation data is observed every minute at 22 KMA (Korea Meteorological Administration) stations using pyranometer from January 2000 to August 2007. These data were calibrated using intensive comparative observation and solar radiation model. Intensive comparative observations are accomplished at 22 KMA stations between KNU (Kangnung (Gangneung-Wonju) National University) standard and station instruments during the month of August 2007. The solar radiation of a clear sky mainly is affected by precipitable water, solar altitude and geological height. Also old (raw) data is corrected by the solar radiation model only about clear day and is revised based on the temporal trend of instrument's sensitivity decrease. At all periods and all stations, differences between raw data (13.31 MJ/day) and corrected data (13.75 MJ/day) are 0.44 MJ/ day. So, the spatial distribution of solar radiation is calculated with seasonal and annual mean, and is the relationship with cloud amount is analyzed. The corrected data show a better consistency with the cloud amount than the old data.

이 연구는 남한지역의 시 공간 태양복사 분포를 분석하는 것이다. 2000년 1월부터 2007년 8월 까지 1분 간격으로 저장된 기상청 관할 22개 관측소의 전천일사 관측자료를 이용하였다. 수집한 일사량 관측자료는 시간에 대하여 변화하는 일사계 감도정수에 대한 불확실성을 제거하기 위하여 비교관측 결과와 태양복사 모델을 이용하여 보정을 하였다. 보정을 수행하기 위하여 강릉대학교 전천일사계를 22개 관측소의 일사계와 2007년 8월 동안 비교 관측을 하였다. 과거자료는 맑은 날에 대하여 태양복사 모형을 이용하여 시간에 대해 감소하는 일사계의 감도정수를 토대로 보정하였다. 모든 지점 및 모든 기간에 대한 평균은 13.31 MJ/day이며 보정을 통하여 13.75 MJ/day가 되어 0.44 MJ/day의 차이가 나타났다. 보정된 자료로 계절평균 및 연평균 태양복사 분포를 계산하였으며 전운량, 오존전량, 에어로솔 광학 두께, 지표면 알베도, 가강수량과 관계성을 분석하였다. 가장 큰 영향을 미치는 전운량 자료를 보정된 자료와 비교한 결과 과거(원시)자료보다 일관성이 더 높게 나타났다.

Keywords

References

  1. 민희경, 김지영, 최병철, 오성남, 2002, Sunphotometer 관측을 통한 서울 대기 중 파장별 에어러솔 광학 깊이의 특성: Cloud Screening Algorithm (CSA) 적용. 한국기상학회지, 38, 25-38.
  2. 부경온, 권원태, 조주영, 양진관, 2005, 한반도 일조시간과 일사관측자료의 공간 상관성 분석. 기상기술, 1, 33-41.
  3. 산업자원부, 2006, 신재생에너지 자원조사.종합관리시스템 구축사업. 산업자원부, 161 p.
  4. 조덕기, 강용혁, 2005, 국내 태양에너지 측정데이터의 신뢰성 평가 및 보정에 관한 연구. 한국태양에너지학회 논문집, 25, 11-18.
  5. 조덕기, 강용혁, 2007, 품질관리시스템을 활용한 태양에너지자원 신뢰성 향상에 관한 연구. 한국태양에너지학회 논문집, 27, 19-27.
  6. 하지현, 박관동, 장기호, 양하영, 2007, MWR 관측치와 비교를 통한 GPS 가강수량 정밀도 검증. 대기, 17, 291-298.
  7. Barker, H.W., 1996, A Parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part I: Methodology and homo-geneous biases. Journal of Atmospheric Sciences, 53, 2289-2303. https://doi.org/10.1175/1520-0469(1996)053<2289:APFCGA>2.0.CO;2
  8. Bird, R.E., 1984, A simple spectral model for direct normal and diffuse horizontal irradiance. Solar Energy, 1, 13-21.
  9. Bird, R.E. and Riordan, C.J., 1986, Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth's surface for cloudless atmospheres. Journal of Climate and Applied Meteorology, 25, 87-97. https://doi.org/10.1175/1520-0450(1986)025<0087:SSSMFD>2.0.CO;2
  10. Chou, M.-D. and Suarez, M.J., 1999, A solar radiation parameterization for atmospheric studies. NASA/TM-1999-104606, 15, 40 p.
  11. Choudhury, B.J., 1996, Comparison of two models relating precipitable water to surface humidity using globally distributed radiosonde data over land surfaces. International journal of climatology, 16, 663-675. https://doi.org/10.1002/(SICI)1097-0088(199606)16:6<663::AID-JOC29>3.0.CO;2-O
  12. Deblonde G., Macpherson, S., Mireault, Y., and Héroux, P., 2005, Evaluation of GPS precipitable water over canada and the IGS network. Journal of Applied Meteorology, 44, 153-166. https://doi.org/10.1175/JAM-2201.1
  13. Hann, J.V., 1906, Lehrbuch der Meteotulogie Vienna, S. Hirzel, Leipzig, 171 p.
  14. IPCC, 2007, Climate change 2007, The physical science basis, Contribution of working group I to the Fourth Assessment Report of the Inter governmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, 996 p.
  15. Iqbal, M., 1983, An introduction to solar radiation. Academic Press, NY, USA, 390 p.
  16. Jensen, M.E., Burman, R.D., and Allen, R.G., 1990, Evapotranspiration and irrigation water requirements. ASCE Manuals and Report on Engineering Practice No. 70, American Society Civil Engineers, NY, USA, 322 p.
  17. Kasten, F., 1966, A new table and approximate formula for relative optical air mass. Archiv fur Meteorologie, Geophysik und Bioklimatologie, B14, 206-223.
  18. Kneizys, F.X., Shettle, E.P., Gallery, W.O., Chetwynd, J.H., Jr., Abrea, L.W., Selby, J.E.A., Fenn, R.W., and McClatchey, R.W., 1980, Atmospheric Transmittance/Radiance: Computer Code LOWTRAN5. Technical Report AFGL-TR-80-0067, 228 p.
  19. Leckner, B., 1978, The Spectral Distribution of Solar Radiation at the Earth's Surface Elements of a Model. Solar Energy, 20, 143-150. https://doi.org/10.1016/0038-092X(78)90187-1
  20. Liou, K.-N., 1992, Radiation and cloud processes in the atmosphere. Oxford University Press, NY, USA, 487 p.
  21. Lowry, D.A. and Glahn, H.R., 1969, Relationships between integrated atmospheric moisture and surface weather. Journal of Applied Meteorology, 8, 762-768. https://doi.org/10.1175/1520-0450(1969)008<0762:RBIAMA>2.0.CO;2
  22. Ohmura, A., Gilgen, H., Hegner, H., Muller, G., Wild, M., Dutton, E., Forgan, B., Frolich, C., Philipona, R., Heimo, A., Konig-Langlo, G., McArthur, B., Pinker, R., Whitlock, C., and Dehne, K., 1998, Baseline Surface Radiation Network (BSRN/WRMC), a new precision radiometry for climate research. Buletin of American Meteorological Society, 79, 2115-2136. https://doi.org/10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2
  23. Paltridge, G.W. and Platt, C.M.R., 1976, Radiative Processes in Meteorology and Climatology. American Elsevier, NY, USA, 318 p.
  24. Smirnov, A., Holben, B.N., Eck, T.F., Dubovik, O., and Slutsker, I., 2000, Cloud screening and quality control algorithms for the AERONET database. Remote Sensing Environment, 73, 337-349. https://doi.org/10.1016/S0034-4257(00)00109-7
  25. Vigroux, E., 1953, Contribution a l'etude experimentale de l'absorption de l'ozone. Annual Physics, 8, 709-762.
  26. WMO, 2008, WMO guide to meteorological instruments and methods of observation. WMO-NO. 8, ISBN 978-92-63-10008-5, 681 p.

Cited by

  1. The Character of Distribution of Solar Radiation in Mongolia based on Meteorological Satellite Data vol.33, pp.2, 2012, https://doi.org/10.5467/JKESS.2012.33.2.139
  2. A Study on the Retrievals of Downward Solar Radiation at the Surface based on the Observations from Multiple Geostationary Satellites vol.29, pp.1, 2013, https://doi.org/10.7780/kjrs.2013.29.1.12
  3. Estimation of Total Cloud Amount from Skyviewer Image Data vol.36, pp.4, 2015, https://doi.org/10.5467/JKESS.2015.36.4.330
  4. Radiometer Measurement Intercomparison using Absolute Cavity Radiometer in Regional Radiometer Center at Tsukuba, Japan vol.12, pp.4, 2016, https://doi.org/10.7849/ksnre.2016.12.12.4.005
  5. Derivations of Surface Solar Radiation from Polar Orbiting Satellite Observations vol.32, pp.3, 2016, https://doi.org/10.7780/kjrs.2016.32.3.1
  6. The Estimation of Monthly Average Solar Radiation using Sunshine Duration and Precipitation Observation Data in Gangneung Region vol.37, pp.1, 2016, https://doi.org/10.5467/JKESS.2016.37.1.29
  7. Cloud cover retrieved from skyviewer: A validation with human observations vol.52, pp.1, 2016, https://doi.org/10.1007/s13143-015-0083-4
  8. Estimation of Surface Solar Radiation using Ground-based Remote Sensing Data on the Seoul Metropolitan Area vol.39, pp.3, 2018, https://doi.org/10.5467/JKESS.2018.39.3.228
  9. Analysis of Meteorological and Radiation Characteristics using WISE Observation Data vol.39, pp.1, 2018, https://doi.org/10.5467/JKESS.2018.39.1.89