Optical anisotropy of aligned pentacene molecules on a rubbed polymer corresponding to the electrical anisotropy

Yu, Chang-Jae;Bae, Jin-Hyuk;Keum, Chang-Min;Lee, Sin-Doo

  • Published : 20100000

Abstract

We report on the optical anisotropy of a pentacene film on a rubbed (poly)vinylalcohol (PVA) layer related to the electrical performances of the pentacene organic field effect transistors (OFETs) depending on the direction of a current flow. The optical anisotropies of the PVA films are negligible with respect to whether or not rubbing process. In the pentacene OFET on the rubbed PVA layer, however, the optical anisotropy is observed and the anisotropy of the electrical performances directly corresponds to the optical anisotropy of the pentacene thin-film on the rubbed PVA layer.

Keywords

References

  1. B. Crone, A. Dodabalapur, Y.Y. Lin, R.W. Filas, Z. Bao, A. Laduca, R. Sarpeshkar, H.E. Katz, W. Li, Nature 403 (2000) 521 https://doi.org/10.1038/35000530
  2. C.D. Dimitrakopoulos, P.R.L. Malenfant, Adv. Mater. 14 (2002) 99 https://doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
  3. L. Zhou, A. Wanga, S.-C. Wu, J. Sun, S. Park, T.N. Jackson, Appl. Phys. Lett. 88 (2006) 083502 https://doi.org/10.1063/1.2178213
  4. X.T. Li, D.H. Pei, S. Kobayashi, Y. Imura, Jpn. J. Appl. Phys. 36 (1997) L432 https://doi.org/10.1143/JJAP.36.L432
  5. I. Yagi, K. Tsukagoshi, Y. Aoyagi, Appl. Phys. Lett. 86 (2005) 103502 https://doi.org/10.1063/1.1875749
  6. F. De Angelis, S. Cipolloni, L. Mariucci, G. Fortunato, Appl. Phys. Lett. 86 (2005) 203505 https://doi.org/10.1063/1.1931833
  7. J.-H. Bae, W.-H. Kim, H. Kim, C. Lee, S.-D. Lee, J. Appl. Phys. 102 (2007) 063508 https://doi.org/10.1063/1.2780869
  8. J.-H. Bae, J. Kim, W.-H. Kim, S.-D. Lee, Jpn. J. Appl. Phys. 46 (2007) 385 https://doi.org/10.1143/JJAP.46.385
  9. P. Dyreklev, G. Gustafsson, O. Inganäs, H. Stubb, Synth. Met. 57 (1993) 4093
  10. X.L. Chen, A.J. Lovinger, Z. Bao, J. Sapjeta, Chem. Mater. 13 (2001) 1341 https://doi.org/10.1021/cm0008563
  11. H. Sirringhaus, R.J. Wilson, R.H. Friend, M. Inbasekara, W. Wu, E.P. Woo, M. Grell, D.D.C. Bradley, Appl. Phys. Lett. 77 (2000) 406 https://doi.org/10.1063/1.126991
  12. W.-Y. Chou, H.-L. Cheng, Adv. Funct. Mater. 14 (2004) 811 https://doi.org/10.1002/adfm.200305047
  13. S.-Z. Weng, W.-S. Hu, C.-H. Cuo, Y.-T. Tao, L.-J. Fan, Y.-W. Yang, Appl. Phys. Lett. 89 (2006) 172103 https://doi.org/10.1063/1.2364125
  14. H. Fujikake, T. Suzuki, T. Murashige, F. Sato, Liq. Cryst. 33 (2006) 1051 https://doi.org/10.1080/02678290600871549
  15. S.-J. Kang, Y.-Y. Noh, K.-J. Baeg, J. Ghim, J.-H. Park, D.-Y. Kim, J.S. Kim, J.H. Park, K. Cho, Appl. Phys. Lett. 92 (2008) 052107 https://doi.org/10.1063/1.2830694
  16. PEM-90 Application Note, Hinds Instruments
  17. D. Guo, K. Sakamoto, K. Miki, S. Ikeda, K. Saiki, Appl. Phys. Lett. 90 (2007) 102117 https://doi.org/10.1063/1.2711776
  18. W.-S. Hu, S.-Z. Weng, Y.-T. Tao, H.-J. Liu, H.-Y. Lee, L.-J. Fan, Y.-W. Yang, Langmuir 23 (2007) 12901 https://doi.org/10.1021/la7027065
  19. W.-S. Hu, S.-Z. Weng, Y.-T. Tao, H.-J. Lie, H.-Y. Lee, Org. Electron. 9 (2008) 385 https://doi.org/10.1016/j.orgel.2008.01.003
  20. A.J. Barlow, J. Lightwave Technol. LT-3 (1985) 135
  21. J.-H. Lee, C.-J. Yu, S.-D. Lee, Mol. Cryst. Liq. Cryst. 321 (1998) 317 https://doi.org/10.1080/10587259808025098
  22. J.-H. Kim, S. Kumar, S.-D. Lee, Phys. Rev. E 57 (1998) 5644 https://doi.org/10.1103/PhysRevE.57.5644
  23. S.C. Lim, S.H. Kim, J.B. Koo, J.H. Lee, C.H. Ku, Y.S. Yang, T. Zyung, Appl. Phys. Lett. 90 (2007) 173512 https://doi.org/10.1063/1.2733626
  24. C.D. Dimitrakopoulos, D.J. Mascaro, IBM J. Res. Dev. 45 (2001) 11