DOI QR코드

DOI QR Code

The Ferroelectric and Piezoelectric Properties on Li$_{2}$O-excess (Na$_{0.51}$K$_{0.47}$Li$_{0.02}$)(Nb$_{0.8}$Ta$_{0.2}$)O$_{3}$ Ceramics

Moon, Sang-Ho;Han, Yong-Su;Lee, Young-Hie;Nam, Song-Min;Koh, Jung-Hyuk;Jeong, Soon-Jong;Kim, Min-Su

  • Published : 20100100

Abstract

One mol% Li$_{2}$O excess ($Na_{0.51}K_{0.47}Li_{0.02}$)($Nb_{0.8}Ta_{0.2}$)O$_{3}$ lead free piezoelectric ceramics were prepared by using a conventional mixed oxide method. Adding various additives such as Li$_{2}$CO$_{3}$, and Ta$_{2}$O$_{5}$, to (Na,K)NbO$_{3}$ makes it easy to carry out the sintering and the poling processes of pure (Na,K)NbO$_{3}$ which has difficulty in sintering and poling. Also, 1 mol% Li$_{2}$O excess $Na_{0.51}K_{0.47}Li_{0.02}$)($Nb_{0.8}Ta_{0.2}$)O$_{3}$ has a lower sintering temperature than that of pure (Na,K)NbO$_{3}$. The crystal structures of 1-mol% Li$_{2}$O-excess ($Na_{0.51}K_{0.47}Li_{0.02}$)($Nb_{0.8}Ta_{0.2}$)O$_{3}$ lead-free piezoelectric ceramics were examined for several sintering temperatures (950 – 1200 ${^{\circ}C}$) by using X-ray diffraction analysis. A piezoelectric constant and a planar electromechanical coupling coefficient of 231 pC/N and 38.9 % were measured in the 1-mol % Li$_{2}$O-excess ($Na_{0.51}K_{0.47}Li_{0.02}$)($Nb_{0.8}Ta_{0.2}$)O$_{3}$ lead-free piezoelectric ceramics sintered at 1050 ${^{\circ}C}$. Also, the remnant polarization and the coercive electric field were 10 $\mu$C/cm$^{2}$ and 4 kV/cm for NKN-LT ceramics, respectively. By measuring the temperature dependent dielectric constant, we found that the tetragonal-cubic phase transition temperature (T$_{c}$) of 1-mol % Li$_{2}$O-excess ($Na_{0.51}K_{0.47}Li_{0.02}$)($Nb_{0.8}Ta_{0.2}$)O$_{3}$ ceramics sintered at 1050 ${^{\circ}C}$ was around 346.8 ${^{\circ}C}$.

Keywords

References

  1. K. Shiratsuyu, K. Hayashi, A. Ando and Y. Sakabe, Jpn. J. Appl. Phys. 39, 5609 (2000) https://doi.org/10.1143/JJAP.39.5609
  2. H. Ouchi, K. Nagano and S. Hayakawa, J. Am. Ceram. Soc. 48, 630 (1965) https://doi.org/10.1111/j.1151-2916.1965.tb14694.x
  3. S. T. Chung, K. Nagata and H. Igarashi, Ferroelectrics 94, 243 (1989) https://doi.org/10.1080/00150198908014259
  4. S. W. Choi, R. T. R. Shrout, S. J. Jang and A. S. Bhalla, Ferroelectrics 100, 29 (1989) https://doi.org/10.1080/00150198908007897
  5. A. Kim, Tran, K. J. Yoon and S. Goo, J. Korean Phys. Soc. 51, S16 (2007) https://doi.org/10.3938/jkps.51.16
  6. M. Iwata, R. Aoyagi, M. Masaki, I. Suzuki, N. Yasuda and Y. Ishibashi, J. Korean Phys. Soc. 51, 740 (2007) https://doi.org/10.3938/jkps.51.740
  7. Y. Saito, H. Takkao, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya and M. Nakamura, Nature (London) 432, 84 (2004) https://doi.org/10.1038/nature03028
  8. M. Kosec, V. Bobnar and M. Hrovat, J. Eur. Ceram. Soc. 25, 2701 (2005) https://doi.org/10.1016/j.jeurceramsoc.2005.03.126
  9. M. Matsubara, T. Yamaguchi and W. Sakamoto, J. Am. Ceram. Soc. 88, 1190 (2005) https://doi.org/10.1111/j.1551-2916.2005.00229.x
  10. S. H. Park, C. W. Ahn, S. Nahm and J. S. Song, Jpn. J. Appl. Phys. 43, L1072 (2004) https://doi.org/10.1143/JJAP.43.L1072
  11. J. Abe, M. Kobune, K. Kitada and T. Yazawa, J. Korean Phys. Soc. 51, 810 (2007) https://doi.org/10.3938/jkps.51.810
  12. Y. Guo, K. Kakimoto and H. Ohsato, Jpn. J. Appl. Phys. 43, 6662 (2004) https://doi.org/10.1143/JJAP.43.6662
  13. J. Wu and D. Xiao, J. Appl. Phys. 102, 114113 (2007) https://doi.org/10.1063/1.2822454
  14. Y. Guo, K. Kakimoto and H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004) https://doi.org/10.1063/1.1813636
  15. G. H. Haertling, J. Am Ceram. Soc. 50, 329 (1967) https://doi.org/10.1111/j.1151-2916.1967.tb15121.x
  16. R. Wang, R. Xie, T. Sekiya, Y. Shimojo, Y. Akimune, N. Hirosaki and M. Itoh, Jpn. J. Appl. Phys. 41, 7119 (2002) https://doi.org/10.1143/JJAP.41.7119
  17. L. Egerton and D. M. Dillon, J. Am. Ceram. Soc. 42, 438 (1959) https://doi.org/10.1111/j.1151-2916.1959.tb12971.x
  18. R. E. Jeager and L. Egerton, J. Am. Ceram. Soc. 45, 209 (1962) https://doi.org/10.1111/j.1151-2916.1962.tb11127.x
  19. Y. Zhen and J.-F. Li, J. Am Ceram. Soc. 89, 3669 (2006) https://doi.org/10.1111/j.1551-2916.2006.01313.x
  20. X. Wang, U. Helmersson, S. Olafsson, S. Runder, L. D. Wernlund and S. Gevorgian, Appl. Phys. Lett. 73, 927 (1998) https://doi.org/10.1063/1.122040

Cited by

  1. ZnO 첨가량에 따른 비납계 (Na0.44K0.52)Nb0.84O3-Li0.04(Sb0.06Ta0.1)O3 세라믹스의 압전 특성 vol.59, pp.11, 2010, https://doi.org/10.5370/kiee.2010.59.11.2021
  2. MnO2 첨가량에 따른 비납계 (Na,K,Li)(Nb,Sb,Ta)O3 세라믹스의 전기적특성 vol.60, pp.4, 2010, https://doi.org/10.5370/kiee.2011.60.4.801
  3. 소결 온도에 따른 0.98(Na0.5K0.5)NbO3-0.02Li(Sb0.17Ta0.83)O3+0.01wt%ZnO 세라믹스의 압전 특성 vol.24, pp.7, 2010, https://doi.org/10.4313/jkem.2011.24.7.543
  4. CuO와 ZnO 첨가에 따른 NKN-BZT 세라믹스의 압전 특성 vol.24, pp.8, 2010, https://doi.org/10.4313/jkem.2011.24.8.636
  5. BiTiO3 첨가에 따른 (Na0.5K0.5)NbO3 세라믹스의 구조적, 전기적 특성 vol.60, pp.11, 2010, https://doi.org/10.5370/kiee.2011.60.11.2093
  6. Calcination Effects on the Piezoelectric Properties for Ag2O Doped 0.94(K0.5Na0.5)NbO3-0.06LiNbO3Lead-Free Piezoelectric Ceramics vol.429, pp.1, 2010, https://doi.org/10.1080/00150193.2012.676965
  7. Phase structure and piezoelectric properties of Li-modified NKLN lead-free piezoelectric ceramics vol.61, pp.6, 2010, https://doi.org/10.3938/jkps.61.891
  8. Ag2O 첨가에 따른 0.98(Na0.5K0.5)NbO3-0.02Li(Sb0.17Ta0.83)O3 세라믹스의 압전특성 vol.25, pp.1, 2010, https://doi.org/10.4313/jkem.2012.25.1.29
  9. 소결온도에 따른 (Na0.465K0.465Bi0.07)(Nb0.93Ti0.07)O3-0.08MnO2 세라믹스의 구조적, 전기적 특성 vol.25, pp.7, 2010, https://doi.org/10.4313/jkem.2012.25.7.506
  10. A study of effects of sintering on the piezoelectric properties of 0.97(K0.5Na0.5)NbO3-0.03(Bi0.5Na0.5)TiO3 lead-free ceramics vol.63, pp.12, 2010, https://doi.org/10.3938/jkps.63.2340