DOI QR코드

DOI QR Code

Multiferroic Properties of Ti-doped BiFeO$_{3}$ Ceramics

Kim, S.J.;Han, S.H.;Kim, H.G.;Kim, A.Y.;Kim, J.S.;Cheon, C.I.

  • Published : 20100100

Abstract

Bi(Fe$_{1-x}$Ti$_{x}$)O$_{3}$ (x = 0, 0.005, 0.01, 0.015) ceramics were prepared by using a conventional solid state reaction method. The influences of Ti doping on the crystal structure and the microstructure and on the dielectric, ferroelectric, and magnetic properties of the BiFeO$_{3}$ ceramics were investigated by using X-ray diffraction, scanning electron microscopy, dielectric measurements, and ferroelectric and magnetic hysteresis measurements. As the amount of Ti substitution was increased, the dielectric loss and the variation in the loss with increasing frequency decreased, and the ferroelectric hysteresis loops changed from rounded to a typical ferroelectric feature. Also, with increasing Ti concentration, the magnetization and the coercive magnetic field increased. Experimental results suggested that partial substitution of high-valance, smaller ionic radius, and nonmagnetic Ti at the Fe site led to a reduction in oxygen vacancies and to a change in the antiferromagnetic structure, resulting in a reduced leakage current and reduced net magnetization, respectively.

Keywords

References

  1. G. A. Smolenskii and I. E. Chupis, Sov. Phys. Usp. 25, 475 (1982) https://doi.org/10.1070/PU1982v025n07ABEH004570
  2. I. G. Ismailzade, Phys. Status Solidi (b) 46, K39 (1971) https://doi.org/10.1002/pssb.2220460156
  3. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig and R. Ramesh, Science 299, 1719 (2003) https://doi.org/10.1126/science.1080615
  4. S. Nakashima, K. Y. Yun, Y. Nakamura and M. Okuyama, J. Korean Phys. Soc. 51, 882 (2007) https://doi.org/10.3938/jkps.51.882
  5. G. L. Yuan, S. W. Or, Y. P. Wang, Z. G. Liu and J. M. Liu, Solid State Commun. 138, 76 (2006) https://doi.org/10.1016/j.ssc.2006.02.005
  6. J. O. Cha, J. S. Ahn and K. B. Lee, J. Korean Phys. Soc. 54, 844 (2009) https://doi.org/10.3938/jkps.54.844
  7. S. R. Das, R. N. P. Choudhary, P. Bhattacharya, R. S. Katiyar, P. Dutta, A. Manivannan and M. S. Seehra, J. Appl. Phys. 101, 034104 (2007) https://doi.org/10.1063/1.2432869
  8. Y. K. Jun, W. T. Moon, C. M. Chang, H. S. Kim, H. S. Ryu, J. W. Kim, K. H. Kim and S. H. Hong, Solid State Commun. 135, 133 (2005) https://doi.org/10.1016/j.ssc.2005.03.038
  9. F. Chang, N. Zhang, F. Yang, S. Wang and G. Song, J. Phys. D: Appl. Phys. 40, 7799 (2007) https://doi.org/10.1088/0022-3727/40/24/031
  10. E. J. Choi, S. S. Kim, J. W. Kim, M. H. Park, H. K Cho, W. J. Kim, S. Yi and D. Yoo, J. Korean Phys. Soc. 51, S138 (2007) https://doi.org/10.3938/jkps.51.138
  11. M. M. Kumar, A. Srinivas and S. V. Suryanarayana, J. Appl. Phys. 87, 855 (2000) https://doi.org/10.1063/1.371953
  12. Z. Chaodan, Y. Jun, Z. Duanming, Y. Bin, W. Yunyi, W. Longhai, W. Yunbo and Z.Wenli, Integr. Ferroelectr. 94, 31 (2007) https://doi.org/10.1080/10584580701755872
  13. M. Kumar, K. L. Yadav and G. D. Varma, Mater. Lett. 62, 1159 (2008) https://doi.org/10.1016/j.matlet.2007.07.075
  14. Y. Xu, Ferroelectric Materials and Their Applications (North-Holland, Amsterdam, 1991)
  15. P. Baettig, C. Ederer and N. A. Spaldin, Phys. Rev. B 72, 214105 (2005) https://doi.org/10.1103/PhysRevB.72.214105
  16. M. Kumar and K. L. Yadav, J. Appl. Phys. 100, 074111 (2006) https://doi.org/10.1063/1.2349491
  17. A. J. Jacobson and B. E. F. Fender, J. Phys. C: Solid State Phys. 8, 844 (1975) https://doi.org/10.1088/0022-3719/8/6/015
  18. S. V. Kiselev, R. P. Ozerov and G. S. Zhdanov, Sov. Phys. Dokl. 7, 742 (1963)
  19. M. M. Kumar, S. Srinath, G. S. Kumar and S. V. Suryanarayana, J. Magn. Magn. Mater. 188, 203 (1998) https://doi.org/10.1016/S0304-8853(98)00167-X
  20. K. Ueda, H. Tabata and T. Kawai, Appl. Phys. Lett. 75, 555 (1999) https://doi.org/10.1063/1.124420

Cited by

  1. Effect of holmium substitution for the improvement of multiferroic properties of BiFeO3 vol.71, pp.11, 2010, https://doi.org/10.1016/j.jpcs.2010.08.001
  2. Synchrotron X-Ray Absorption Study of Cu and Mn Doped BiFeO3-BaTiO3Multiferroic Ceramics vol.422, pp.1, 2011, https://doi.org/10.1080/00150193.2011.594772
  3. Ferroelectric properties of Zn- and Ti-doped BiFeO3 thin films vol.60, pp.2, 2010, https://doi.org/10.3938/jkps.60.272
  4. Ferroelectric properties of BiFeO3 ceramics sintered under low oxygen partial pressure vol.60, pp.1, 2012, https://doi.org/10.3938/jkps.60.83
  5. Effect of sintering temperature on the piezoelectric properties in BiFeO3-BaTiO3 ceramics vol.61, pp.6, 2012, https://doi.org/10.3938/jkps.61.947
  6. 비스무스 페라이트계 무연 압전 세라믹스 vol.25, pp.9, 2012, https://doi.org/10.4313/jkem.2012.25.9.692
  7. Structure and spin dynamics of multiferroic BiFeO3 vol.26, pp.43, 2010, https://doi.org/10.1088/0953-8984/26/43/433202
  8. Effect of BaTiO3 addition on structural, multiferroic and magneto-dielectric properties of 0.3CoFe2O4−0.7BiFeO3 ceramics vol.23, pp.10, 2010, https://doi.org/10.1088/0964-1726/23/10/105024
  9. Effect of BaTiO3 addition on structural, multiferroic and magneto-dielectric properties of 0.3CoFe2O4−0.7BiFeO3 ceramics vol.23, pp.10, 2010, https://doi.org/10.1088/0964-1726/23/10/105024
  10. Synthesis, microstructure and properties of BiFeO3-based multiferroic materials: A review vol.53, pp.1, 2010, https://doi.org/10.3989/cyv.12014
  11. Improved magnetic and ferroelectric properties of Sc and Ti codoped multiferroic nano BiFeO3 prepared via sonochemical synthesis vol.43, pp.21, 2010, https://doi.org/10.1039/c3dt52779d
  12. Electron spin resonance study and improved magnetic and dielectric properties of Gd-Ti co-substituted BiFeO3 ceramics vol.25, pp.12, 2010, https://doi.org/10.1007/s10854-014-2315-2
  13. Enhanced dielectric, ferroelectric and magnetodielectric properties in three phase 0.45Bi0.9La0.1FeO3-0.55Co0.5Ni0.5Fe2O4-BaTiO3 composite vol.27, pp.6, 2016, https://doi.org/10.1007/s10854-016-4569-3
  14. Effect of doping on optical properties in BiMn1−x (TE) x O3 (where x = 0.0, 0.1 and TE = Cr, Fe, Co, Zn) nanoparticles synthesized by microwave and sol-gel methods vol.123, pp.6, 2010, https://doi.org/10.1007/s00339-017-1042-y
  15. Multiferroicity in sol–gel synthesized Sr/Mn co-doped BiFeO3 nanoparticles vol.28, pp.22, 2010, https://doi.org/10.1007/s10854-017-7654-3
  16. Optical properties of nanocrystallite films ofα-Fe2O3andα-Fe2−xCrxO3(0.0 ⩽ x ⩽ 0.9) deposited on glass substrate vol.4, pp.7, 2010, https://doi.org/10.1088/2053-1591/aa75e9
  17. The sintering behavior and physical properties of Li2CO3-doped Bi0.5(Na0.8K0.2)0.5TiO3 lead-free ceramics vol.108, pp.3, 2017, https://doi.org/10.3139/146.111465
  18. Doping of BiFeO3 : A comprehensive study on substitutional doping vol.98, pp.12, 2010, https://doi.org/10.1103/physrevb.98.125202
  19. Temperature-dependent structure, dielectric properties of Bi $ _{0.95}$ Ba $ _{0.05}$ Fe $ _{0.95}$ Ti $ _{0.05}$ O $ _{1.3}$ vol.33, pp.27, 2010, https://doi.org/10.1142/s0217979219503181
  20. Effect of Diamagnetic Ion Substitution on Structural and Magnetic Properties of Nd3+ Modified Solid Solutions vol.203, pp.1, 2019, https://doi.org/10.1080/10584587.2019.1700073
  21. Investigation of magnetic and ferroelectric properties along with the magnetoelectric coupling behavior for asserting a room temperature bi-phase composite as multiferroics vol.45, pp.2, 2010, https://doi.org/10.1007/s10832-020-00225-4
  22. A-site Doping Effect of Multiferroic BiFeO3 Ceramics vol.77, pp.11, 2010, https://doi.org/10.3938/jkps.77.1021
  23. Tailoring the Size and Magnetization of Titanium-Doped BiFeO3 Nanorods vol.50, pp.3, 2010, https://doi.org/10.1007/s11664-020-08632-7