DOI QR코드

DOI QR Code

Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins

  • Chaikam, Vijay (Division of Plant and Soil Sciences, West Virginia University) ;
  • Karlson, Dale T. (Division of Plant and Soil Sciences, West Virginia University)
  • Published : 2010.01.31

Abstract

The cold shock domain (CSD) is among the most ancient and well conserved nucleic acid binding domains from bacteria to higher animals and plants. The CSD facilitates binding to RNA, ssDNA and dsDNA and most functions attributed to cold shock domain proteins are mediated by this nucleic acid binding activity. In prokaryotes, cold shock domain proteins only contain a single CSD and are termed cold shock proteins (Csps). In animal model systems, various auxiliary domains are present in addition to the CSD and are commonly named Y-box proteins. Similar to animal CSPs, plant CSPs contain auxiliary C-terminal domains in addition to their N-terminal CSD. Cold shock domain proteins have been shown to play important roles in development and stress adaptation in wide variety of organisms. In this review, the structure, function and regulation of plant CSPs are compared and contrasted to the characteristics of bacterial and animal CSPs.

Keywords

References

  1. Graumann, P. and Marahiel, M. A. (1996) A case of convergent evolution of nucleic acid binding modules. Bioessays 18, 309-315 https://doi.org/10.1002/bies.950180409
  2. Goldstein, J., Pollitt, N. S. and Inouye, M. (1990) Major cold shock protein of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 87, 283-287 https://doi.org/10.1073/pnas.87.1.283
  3. Manival, X., Ghisolfi-Nieto, L., Joseph, G., Bouvet, P. and Erard, M. (2001) RNA-binding strategies common to coldshock domain- and RNA recognition motif-containing proteins. Nucleic Acids Res. 29, 2223-2233 https://doi.org/10.1093/nar/29.11.2223
  4. Landsman, D. (1992) RNP-1, an RNA-binding motif is conserved in the DNA-binding cold shock domain. Nucleic Acids Res. 20, 2861-2864 https://doi.org/10.1093/nar/20.11.2861
  5. Schindelin, H., Marahiel, M. A. and Heinemann, U. (1993) Universal nucleic acid-binding domain revealed by crystal structure of the B. subtilis major cold-shock protein. Nature 364, 164-168 https://doi.org/10.1038/364164a0
  6. Newkirk, K., Feng, W., Jiang, W., Tejero, R., Emerson, S. D., Inouye, M. and Montelione, G. T. (1994) Solution NMR structure of the major cold shock protein (CspA) from Escherichia coli: identification of a binding epitope for DNA. Proc. Natl. Acad. Sci. U.S.A. 91, 5114-5118 https://doi.org/10.1073/pnas.91.11.5114
  7. Schindelin, H., Jiang, W., Inouye, M. and Heinemann, U.(1994) Crystal structure of CspA, the major cold shock protein of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 91, 5119-5123 https://doi.org/10.1073/pnas.91.11.5119
  8. Feng, W., Tejero, R., Zimmerman, D. E., Inouye, M. and Montelione, G. T. (1998) Solution NMR structure and backbone dynamics of the major cold-shock protein(CspA) from Escherichia coli: evidence for conformational dynamics in the single-stranded RNA-binding site. Biochemistry 37, 10881-10896 https://doi.org/10.1021/bi980269j
  9. Schroder, K., Graumann, P., Schnuchel, A., Holak, T. A. and Marahiel, M. A. (1995) Mutational analysis of the putative nucleic acid-binding surface of the cold-shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of single-stranded DNA containing the Y-box motif. Mol. Microbiol. 16, 699-708 https://doi.org/10.1111/j.1365-2958.1995.tb02431.x
  10. Schnuchel, A., Wiltscheck, R., Czisch, M., Herrler, M., Willimsky, G., Graumann, P., Marahiel, M. A. and Holak, T. A. (1993) Structure in solution of the major cold-shock protein from Bacillus subtilis. Nature 364, 169-171 https://doi.org/10.1038/364169a0
  11. Matsumoto, K. and Wolffe, A. P. (1998) Gene regulation by Y-box proteins: coupling control of transcription and translation. Trends Cell Biol. 8, 318-323 https://doi.org/10.1016/S0962-8924(98)01300-2
  12. Bader, A. G. and Vogt, P. K. (2005) Inhibition of protein synthesis by Y box-binding protein 1 blocks oncogenic cell transformation. Mol. Cell. Biol. 25, 2095-2106 https://doi.org/10.1128/MCB.25.6.2095-2106.2005
  13. Kloks, C. P., Spronk, C. A., Lasonder, E., Hoffmann, A.,Vuister, G. W., Grzesiek, S. and Hilbers, C. W. (2002) The solution structure and DNA-binding properties of the cold-shock domain of the human Y-box protein YB-1. J. Mol. Biol. 316, 317-326 https://doi.org/10.1006/jmbi.2001.5334
  14. Evdokimova, V. M. and Ovchinnikov, L. P. (1999) Translational regulation by Y-box transcription factor: involvement of the major mRNA-associated protein, p50. Int. J. Biochem. Cell Biol. 31, 139-149 https://doi.org/10.1016/S1357-2725(98)00137-X
  15. Wolffe, A. P. (1994) Structural and functional properties of the evolutionarily ancient Y-box family of nucleic acid binding proteins. Bioessays 16, 245-251 https://doi.org/10.1002/bies.950160407
  16. Evdokimova, V. M., Wei, C. L., Sitikov, A. S., Simonenko,P. N., Lazarev, O. A., Vasilenko, K. S., Ustinov, V. A., Hershey, J. W. and Ovchinnikov, L. P. (1995) The major protein of messenger ribonucleoprotein particles in somatic cells is a member of the Y-box binding transcription factor family. J. Biol. Chem. 270, 3186-3192 https://doi.org/10.1074/jbc.270.7.3186
  17. Gaudreault, I., Guay, D. and Lebel, M. (2004) YB-1 promotes strand separation in vitro of duplex DNA containing either mispaired bases or cisplatin modifications, exhibits endonucleolytic activities and binds several DNA repair proteins. Nucleic. Acids. Res. 32, 316-327 https://doi.org/10.1093/nar/gkh170
  18. Skabkin, M. A., Liabin, D. N. and Ovchinnikov, L. P. (2006) Nonspecific and specific interaction of Y-box binding protein 1 (YB-1) with mRNA and posttranscriptional regulation of protein synthesis in animal cells. Mol. Biol (Mosk). 40, 620-633 https://doi.org/10.1134/S0026893306040145
  19. Karlson, D. and Imai, R. (2003) Conservation of the cold shock domain protein family in plants. Plant Physiol. 131,12-15 https://doi.org/10.1104/pp.014472
  20. Yamanaka, K., Fang, L. and Inouye, M. (1998) The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol. Microbiol. 27, 247-255 https://doi.org/10.1046/j.1365-2958.1998.00683.x
  21. Lee, S. J., Xie, A., Jiang, W., Etchegaray, J. P., Jones, P. G. and Inouye, M. (1994) Family of the major cold-shock protein, CspA (CS7.4), of Escherichia coli, whose members show a high sequence similarity with the eukaryotic Y-box binding proteins. Mol. Microbiol. 11, 833-839 https://doi.org/10.1111/j.1365-2958.1994.tb00361.x
  22. Nakashima, K., Kanamaru, K., Mizuno, T. and Horikoshi, K. (1996) A novel member of the CspA family of genes that is induced by cold shock in Escherichia coli. J. Bacteriol. 178, 2994-2997 https://doi.org/10.1128/jb.178.10.2994-2997.1996
  23. Wang, N., Yamanaka, K. and Inouye, M. (1999) CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock. J. Bacteriol. 181, 1603-1609
  24. Jiang, W., Hou, Y. and Inouye, M. (1997) CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J. Biol. Chem. 272, 196-202 https://doi.org/10.1074/jbc.272.1.196
  25. Phadtare, S., Inouye, M. and Severinov, K. (2002) The nucleic acid melting activity of Escherichia coli CspE is critical for transcription antitermination and cold acclimation of cells. J. Biol .Chem. 277, 7239-7245 https://doi.org/10.1074/jbc.M111496200
  26. Phadtare, S. and Severinov, K. (2005) Nucleic acid melting by Escherichia coli CspE. Nucleic. Acids. Res. 33, 5583-5590 https://doi.org/10.1093/nar/gki859
  27. Xia, B., Ke, H. and Inouye, M. (2001) Acquirement of cold sensitivity by quadruple deletion of the CspA family and its suppression by PNPase S1 domain in Escherichia coli. Mol. Microbiol. 40, 179-188 https://doi.org/10.1046/j.1365-2958.2001.02372.x
  28. Matsumoto, K., Tanaka, K. J. and Tsujimoto, M. (2005) An acidic protein, YBAP1, mediates the release of YB-1 from mRNA and relieves the translational repression activity of YB-1. Mol. Cell. Biol. 25, 1779-1792 https://doi.org/10.1128/MCB.25.5.1779-1792.2005
  29. Karlson, D., Nakaminami, K., Toyomasu, T. and Imai, R. (2002) A cold regulated nucleic acid-binding protein of winter wheat shares a domain with bacterial cold shock proteins. J. Biol. Chem. 277, 35248-35256 https://doi.org/10.1074/jbc.M205774200
  30. Nakaminami, K., Karlson, D. T. and Imai, R. (2006) Functional conservation of cold shock domains in bacteria and higher plants. Proc. Natl. Acad. Sci. U.S.A. 103, 10122-10127 https://doi.org/10.1073/pnas.0603168103
  31. Kim, J. S., Park, S. J., Kwak, K. J., Kim, Y. O., Kim, J. Y.,Song, J., Jang, B., Jung, C. H. and Kang, H. (2007) Cold shock domain proteins and glycine-rich RNA-binding proteins proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli. Nucleic Acids. Res. 35, 506-516 https://doi.org/10.1093/nar/gkl1076
  32. Sasaki, K., Kim, M. H. and Imai, R. (2007) Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals. Biochem. Biophys. Res. Commun. 364, 633-638 https://doi.org/10.1016/j.bbrc.2007.10.059
  33. Kim, M. H., Sasaki, K. and Imai, R. (2009) Cold shock domain protein 3 regulates freezing tolerance in Arabidopsis thaliana. J. Biol. Chem. 284, 23454-23460 https://doi.org/10.1074/jbc.M109.025791
  34. Park, S. J., Kwak, K. J., Oh, T. R., Kim, Y. O. and Kang, H. (2009) Cold shock domain proteins affect seed germination and growth of Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol. 50, 869-878 https://doi.org/10.1093/pcp/pcp037
  35. Chaikam, V. and Karlson, D. (2008) Functional characterization of two cold shock domain proteins from Oryza sativa. Plant Cell Environ. 31, 995-1006 https://doi.org/10.1111/j.1365-3040.2008.01811.x
  36. Karlson, D., Nakaminami, K., Thompson, K., Yang, Y.,Chaikam, V. and Mulinti, P. (2009) Plant cold shock domain proteins: On the tip of an iceberg; in Plant Cold Hardiness From the Laboratory to the Field, Gusta, L. V.,Wisniewski, M. E. and Tanino, K. K. (eds.), pp.43-54, CABI, Cambridge, USA
  37. Hu, K. H., Liu, E., Dean, K., Gingras, M., DeGraff, W. and Trun, N. J. (1996) Overproduction of three genes leads to camphor resistance and chromosome condensation in Escherichia coli. Genetics 143, 1521-1532
  38. Yamanaka, K. and Inouye, M. (2001) Induction of CspA, an E. coli major cold-shock protein, upon nutritional upshift at 37 degrees C. Genes Cells 6, 279-290 https://doi.org/10.1046/j.1365-2443.2001.00424.x
  39. Koike, K., Uchiumi, T., Ohga, T., Toh, S., Wada, M., Kohno, K. and Kuwano, M. (1997) Nuclear translocation of the Y-box binding protein by ultraviolet irradiation. FEBS Lett. 417, 390-394 https://doi.org/10.1016/S0014-5793(97)01296-9
  40. Ise, T., Nagatani, G., Imamura, T., Kato, K., Takano, H.,Nomoto, M., Izumi, H., Ohmori, H., Okamoto, T., Ohga,T., Uchiumi, T., Kuwano, M. and Kohno, K. (1999)Transcription factor Y-box binding protein 1 binds preferentially to cisplatin-modified DNA and interacts with proliferating cell nuclear antigen. Cancer Res. 59, 342-346
  41. Skabkin, M. A., Evdokimova, V., Thomas, A. A. and Ovchinnikov, L. P. (2001) The major messenger ribonucleoprotein particle protein p50 (YB-1) promotes nucleic acid strand annealing. J. Biol. Chem. 276, 44841-44847 https://doi.org/10.1074/jbc.M107581200
  42. Levenson, V. V., Davidovich, I. A. and Roninson, I. B.(2000) Pleiotropic resistance to DNA-interactive drugs is associated with increased expression of genes involved in DNA replication, repair, and stress response. Cancer Res. 60, 5027-5030
  43. En-Nia, A., Yilmaz, E., Klinge, U., Lovett, D. H., Stefanidis,I. and Mertens, P. R. (2005) Transcription factor YB-1 mediates DNA polymerase alpha gene expression. J. Biol. Chem. 280, 7702-7711 https://doi.org/10.1074/jbc.M413353200
  44. Hanna, M. M. and Liu, K. (1998) Nascent RNA in transcription complexes interacts with CspE, a small protein in E. coli implicated in chromatin condensation. J. Mol. Biol. 282, 227-239 https://doi.org/10.1006/jmbi.1998.2005
  45. Bae, W., Xia, B., Inouye, M. and Severinov, K. (2000)Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc. Natl. Acad. Sci. U.S.A. 97, 7784-7789 https://doi.org/10.1073/pnas.97.14.7784
  46. Bae, W., Phadtare, S., Severinov, K. and Inouye, M. (1999) Characterization of Escherichia coli cspE, whose product negatively regulates transcription of cspA, the gene for the major cold shock protein. Mol. Microbiol. 31, 1429-1441 https://doi.org/10.1046/j.1365-2958.1999.01284.x
  47. Jiang, W., Fang, L. and Inouye, M. (1996) Complete growth inhibition of Escherichia coli by ribosome trapping with truncated CspA mRNA at low temperature. Genes Cells 1, 965-976 https://doi.org/10.1046/j.1365-2443.1996.d01-219.x
  48. Didier, D. K., Schiffenbauer, J., Woulfe, S. L., Zacheis, M. and Schwartz, B. D. (1988) Characterization of the cDNA encoding a protein binding to the major histocompatibility complex class II Y box. Proc. Natl. Acad. Sci .U.S.A. 85, 7322-7326 https://doi.org/10.1073/pnas.85.19.7322
  49. Kohno, K., Izumi, H., Uchiumi, T., Ashizuka, M. and Kuwano,M. (2003) The pleiotropic functions of the Y-boxbinding protein, YB-1. Bioessays 25, 691-698 https://doi.org/10.1002/bies.10300
  50. Swamynathan, S. K., Nambiar, A. and Guntaka, R. V. (1998) Role of single-stranded DNA regions and Y-box proteins in transcriptional regulation of viral and cellular genes. FASEB J. 12, 515-522 https://doi.org/10.1096/fasebj.12.7.515
  51. Jurchott, K., Bergmann, S., Stein, U., Walther, W., Janz,M., Manni, I., Piaggio, G., Fietze, E., Dietel, M. and Royer, H. D. (2003) YB-1 as a cell cycle-regulated transcription factor facilitating cyclin A and cyclin B1 gene expression. J. Biol .Chem. 278, 27988-27996 https://doi.org/10.1074/jbc.M212966200
  52. Stenina, O. I., Shaneyfelt, K. M. and DiCorleto, P. E.(2001) Thrombin induces the release of the Y-box protein dbpB from mRNA: a mechanism of transcriptional activation. Proc. Natl. Acad. Sci. U.S.A. 98, 7277-7282 https://doi.org/10.1073/pnas.121592298
  53. Fusaro, A. F., Bocca, S. N., Ramos, R. L., Barroco, R. M.,Magioli, C., Jorge, V. C., Coutinho, T. C., Rangel-Lima, C.M., De Rycke, R., Inze, D., Engler, G. and Sachetto-Martins, G. (2007) AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development. Planta. 225, 1339-1351 https://doi.org/10.1007/s00425-006-0444-4
  54. Phadtare, S. and Inouye, M. (1999) Sequence-selective interactions with RNA by CspB, CspC and CspE, members of the CspA family of Escherichia coli. Mol. Microbiol. 33, 1004-1014 https://doi.org/10.1046/j.1365-2958.1999.01541.x
  55. Feng, Y., Huang, H., Liao, J. and Cohen, S. N. (2001)Escherichia coli poly(A)-binding proteins that interact with components of degradosomes or impede RNA decay mediated by polynucleotide phosphorylase and RNase E. J. Biol. Chem. 276, 31651-31656 https://doi.org/10.1074/jbc.M102855200
  56. Phadtare, S. and Inouye, M. (2001) Role of CspC and CspE in regulation of expression of RpoS and UspA, the stress response proteins in Escherichia coli. J. Bacteriol. 183, 1205-1214 https://doi.org/10.1128/JB.183.4.1205-1214.2001
  57. Preobrazhensky, A. A. and Spirin, A. S. (1978) Informosomes and their protein components: the present state of knowledge. Prog. Nucleic. Acid. Res. Mol. Biol. 21, 1-38 https://doi.org/10.1016/S0079-6603(08)60265-2
  58. Dreyfuss, G. (1986) Structure and function of nuclear and cytoplasmic ribonucleoprotein particles. Annu. Rev. Cell. Biol. 2, 459-498 https://doi.org/10.1146/annurev.cb.02.110186.002331
  59. Minich, W. B., Maidebura, I. P. and Ovchinnikov, L. P.(1993) Purification and characterization of the major 50-kDa repressor protein from cytoplasmic mRNP of rabbit reticulocytes. Eur. J. Biochem. 212, 633-638 https://doi.org/10.1111/j.1432-1033.1993.tb17701.x
  60. Blobel, G. (1973) A protein of molecular weight 78,000 bound to the polyadenylate region of eukaryotic messenger RNAs. Proc. Natl. Acad. Sci U.S.A. 70, 924-928 https://doi.org/10.1073/pnas.70.3.924
  61. van Venrooij, W. J., van Eekelen, C. A., Jansen, R. T. and Princen, J. M. (1977) Specific poly-A-binding protein of 76,000 molecular weight in polyribosomes is not present on poly A of free cytoplasmic mRNP. Nature 270, 189-191 https://doi.org/10.1038/270189a0
  62. Minich, W. B. and Ovchinnikov, L. P. (1992) Role of cytoplasmic mRNP proteins in translation. Biochimie. 74, 477-483 https://doi.org/10.1016/0300-9084(92)90088-V
  63. Soop, T., Nashchekin, D., Zhao, J., Sun, X., Alzhanova-Ericsson, A. T., Bjorkroth, B., Ovchinnikov, L. and Daneholt, B. (2003) A p50-like Y-box protein with a putative translational role becomes associated with pre-mRNA concomitant with transcription. J. Cell. Sci. 116, 1493-1503 https://doi.org/10.1242/jcs.00353
  64. Evdokimova, V. M., Kovrigina, E. A., Nashchekin, D. V.,Davydova, E. K., Hershey, J. W. and Ovchinnikov, L. P.(1998) The major core protein of messenger ribonucleoprotein particles (p50) promotes initiation of protein biosynthesis in vitro. J. Biol. Chem. 273, 3574-3581 https://doi.org/10.1074/jbc.273.6.3574
  65. Nekrasov, M. P., Ivshina, M. P., Chernov, K. G., Kovrigina,E. A., Evdokimova, V. M., Thomas, A. A., Hershey, J.W. and Ovchinnikov, L. P. (2003) The mRNA-binding protein YB-1 (p50) prevents association of the eukaryotic initiation factor eIF4G with mRNA and inhibits protein synthesis at the initiation stage. J. Biol. Chem. 278, 13936-13943 https://doi.org/10.1074/jbc.M209145200
  66. Chen, C. Y., Gherzi, R., Andersen, J. S., Gaietta, G.,Jurchott, K., Royer, H. D., Mann, M. and Karin, M. (2000)Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Genes Dev. 14, 1236-1248
  67. Evdokimova, V., Ruzanov, P., Imataka, H., Raught, B.,Svitkin, Y., Ovchinnikov, L. P. and Sonenberg, N. (2001)The major mRNA-associated protein YB-1 is a potent 5'cap-dependent mRNA stabilizer. EMBO J. 20, 5491-5502 https://doi.org/10.1093/emboj/20.19.5491
  68. Stickeler, E., Fraser, S. D., Honig, A., Chen, A. L., Berget, S. M. and Cooper, T. A. (2001) The RNA binding protein YB-1 binds A/C-rich exon enhancers and stimulates splicing of the CD44 alternative exon v4. EMBO J. 20, 3821-3830 https://doi.org/10.1093/emboj/20.14.3821
  69. Chansky, H. A., Hu, M., Hickstein, D. D. and Yang, L.(2001) Oncogenic TLS/ERG and EWS/Fli-1 fusion proteins inhibit RNA splicing mediated by YB-1 protein. Cancer Res. 61, 3586-3590
  70. Mussgnug, J. H., Wobbe, L., Elles, I., Claus, C., Hamilton,M., Fink, A., Kahmann, U., Kapazoglou, A., Mullineaux, C. W., Hippler, M., Nickelsen, J., Nixon, P. J. and Kruse,O. (2005) NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii. Plant. Cell 17, 3409-3421 https://doi.org/10.1105/tpc.105.035774
  71. Tanabe, H., Goldstein, J., Yang, M. and Inouye, M. (1992)Identification of the promoter region of the Escherichia coli major cold shock gene, cspA. J. Bacteriol. 174, 3867-3873 https://doi.org/10.1128/jb.174.12.3867-3873.1992
  72. Brandi, A., Pietroni, P., Gualerzi, C. O. and Pon, C. L.(1996) Post-transcriptional regulation of CspA expression in Escherichia coli. Mol. Microbiol. 19, 231-240 https://doi.org/10.1046/j.1365-2958.1996.362897.x
  73. Fang, L., Jiang, W., Bae, W. and Inouye, M. (1997)Promoter-independent cold-shock induction of CspA and its derepression at 37 degrees C by mRNA stabilization. Mol. Microbiol. 23, 355-364 https://doi.org/10.1046/j.1365-2958.1997.2351592.x
  74. Goldenberg, D., Azar, I. and Oppenheim, A. B. (1996)Differential mRNA stability of the CspA gene in the cold-shock response of Escherichia coli. Mol. Microbiol. 19, 241-248 https://doi.org/10.1046/j.1365-2958.1996.363898.x
  75. Yamanaka, K. and Inouye, M. (2001) Selective mRNA degradation by polynucleotide phosphorylase in cold shock adaptation in Escherichia coli. J. Bacteriol. 183, 2808-2816 https://doi.org/10.1128/JB.183.9.2808-2816.2001
  76. Jiang, W., Fang, L. and Inouye, M. (1996) The role of the 5'-end untranslated region of the mRNA for CspA, the major cold-shock protein of Escherichia coli, in cold-shock adaptation. J. Bacteriol. 178, 4919-4925 https://doi.org/10.1128/jb.178.16.4919-4925.1996
  77. Skabkina, O. V., Skabkin, M. A., Popova, N. V., Lyabin, D. N., Penalva, L. O. and Ovchinnikov, L. P. (2003)Poly(A)-binding protein positively affects YB-mRNA translation through specific interaction with YB-1 mRNA. J. Biol. Chem. 278, 18191-18198 https://doi.org/10.1074/jbc.M209073200
  78. Skabkina, O. V., Lyabin, D. N., Skabkin, M. A. and Ovchinnikov, L. P. (2005) YB-1 autoregulates translation of its own mRNA at or prior to the step of 40S ribosomal subunit joining. Mol. Cell. Biol. 25, 3317-3323 https://doi.org/10.1128/MCB.25.8.3317-3323.2005
  79. Nakaminami, K., Hill, K., Perry, S. E., Sentoku, N., Long, J. A. and Karlson, D. T. (2009) Arabidopsis cold shock domain proteins: relationships to floral and silique development. J. Exp. Bot. 60, 1047-1062 https://doi.org/10.1093/jxb/ern351
  80. Sommerville, J. (1999) Activities of cold-shock domain proteins in translation control. Bioessays. 21, 319-325 https://doi.org/10.1002/(SICI)1521-1878(199904)21:4<319::AID-BIES8>3.0.CO;2-3
  81. Murray, M. T., Krohne, G. and Franke, W. W. (1991)Different forms of soluble cytoplasmic mRNA binding proteins and particles in Xenopus laevis oocytes and embryos. J. Cell. Biol. 112, 1-11 https://doi.org/10.1083/jcb.112.1.1
  82. Gu, W., Tekur, S., Reinbold, R., Eppig, J. J., Choi, Y. C.,Zheng, J. Z., Murray, M. T. and Hecht, N. B. (1998) Mammalian male and female germ cells express a germ cell-specific Y-Box protein, MSY2. Biol. Reprod. 59, 1266-1274 https://doi.org/10.1095/biolreprod59.5.1266
  83. Tafuri, S. R. and Wolffe, A. P. (1993) Selective recruitment of masked maternal mRNA from messenger ribonucleoprotein particles containing FRGY2 (mRNP4). J. Biol. Chem. 268, 24255-24261
  84. Davies, H. G., Giorgini, F., Fajardo, M. A. and Braun, R.E. (2000) A sequence-specific RNA binding complex expressed in murine germ cells contains MSY2 and MSY4. Dev. Biol. 221, 87-100 https://doi.org/10.1006/dbio.2000.9658
  85. Yu, J., Hecht, N. B. and Schultz, R. M. (2001) Expression of MSY2 in mouse oocytes and preimplantation embryos. Biol. Reprod. 65, 1260-1270 https://doi.org/10.1095/biolreprod65.4.1260
  86. Yu, J., Deng, M., Medvedev, S., Yang, J., Hecht, N. B. and Schultz, R. M. (2004) Transgenic RNAi-mediated reduction of MSY2 in mouse oocytes results in reduced fertility. Dev. Biol. 268, 195-206 https://doi.org/10.1016/j.ydbio.2003.12.020
  87. Yang, J., Morales, C. R., Medvedev, S., Schultz, R. M. and Hecht, N. B. (2007) In the absence of the mouse DNA/RNA-binding protein MSY2, messenger RNA instability leads to spermatogenic arrest. Biol. Reprod. 76, 48-54 https://doi.org/10.1095/biolreprod.106.055095
  88. Moss, E. G., Lee, R. C. and Ambros, V. (1997) The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88, 637-646 https://doi.org/10.1016/S0092-8674(00)81906-6
  89. Nakaminami, K., Hill, K., Perry, S. E., Sentoku, N., Long, J. A. and Karlson, D. T. (2009) Arabidopsis cold shock domain proteins: relationships to floral and silique development. J. Exp. Bot. 60, 1047-1062 https://doi.org/10.1093/jxb/ern351
  90. Sommerville, J. and Ladomery, M. (1996) Masking of mRNA by Y-box proteins. FASEB J. 10, 435-443 https://doi.org/10.1096/fasebj.10.4.8647342
  91. Evdokimova, V., Ruzanov, P., Anglesio, M. S., Sorokin, A.V., Ovchinnikov, L. P., Buckley, J., Triche, T. J., Sonenberg, N. and Sorensen, P. H. (2006) Akt-mediated YB-1 phosphorylation activates translation of silent mRNA species. Mol. Cell. Biol. 26, 277-292 https://doi.org/10.1128/MCB.26.1.277-292.2006
  92. Bono, E., Compagno, V., Proia, P., Raimondi, L., Schiera, G., Favaloro, V., Campo, V., Donatelli, M. and Di Liegro, I. (2007) Thyroid hormones induce sumoylation of the cold shock domain-containing protein PIPPin in developing rat brain and in cultured neurons. Endocrinology 148, 252-257 https://doi.org/10.1210/en.2006-0660

Cited by

  1. Disulfide proteomics of rice cultured cells in response to OsRacl and probenazole-related immune signaling pathway in rice vol.15, pp.1, 2016, https://doi.org/10.1186/s12953-017-0115-3
  2. Physiological and molecular changes in plants grown at low temperatures vol.235, pp.6, 2012, https://doi.org/10.1007/s00425-012-1641-y
  3. Plant RNA chaperones in stress response vol.18, pp.2, 2013, https://doi.org/10.1016/j.tplants.2012.08.004
  4. Insights into the Psychrophilic and Sea Ice-Specific Lifestyle of Marinobacter sp. Strain AC-23: a Genomic Approach vol.5, pp.15, 2017, https://doi.org/10.1128/genomeA.00134-17
  5. Alternative splicing and expression analysis of High expression of osmotically responsive genes1 (HOS1) in Arabidopsis vol.45, pp.9, 2012, https://doi.org/10.5483/BMBRep.2012.45.9.092
  6. Solution structure of the cold-shock-like protein fromRickettsia rickettsii vol.68, pp.11, 2012, https://doi.org/10.1107/S174430911203881X
  7. Different Transcriptional Responses from Slow and Fast Growth Rate Strains of Listeria monocytogenes Adapted to Low Temperature vol.7, 2016, https://doi.org/10.3389/fmicb.2016.00229
  8. Predicted Cold Shock Proteins from the Extremophilic Bacterium Deinococcus maricopensis and Related Deinococcus Species vol.2017, 2017, https://doi.org/10.1155/2017/5231424
  9. Bacterial adaptation to cold vol.159, pp.Pt_12, 2013, https://doi.org/10.1099/mic.0.052209-0
  10. Stress-responsive expression patterns and functional characterization of cold shock domain proteins in cabbage ( Brassica rapa ) under abiotic stress conditions vol.96, 2015, https://doi.org/10.1016/j.plaphy.2015.07.027
  11. RNA regulation in plant abiotic stress responses vol.1819, pp.2, 2012, https://doi.org/10.1016/j.bbagrm.2011.07.015
  12. Cold Shock Proteins: A Minireview with Special Emphasis on Csp-family of Enteropathogenic Yersinia vol.7, 2016, https://doi.org/10.3389/fmicb.2016.01151
  13. The genome of the Antarctic polyextremophileNesterenkoniasp. AN1 reveals adaptive strategies for survival under multiple stress conditions vol.92, pp.4, 2016, https://doi.org/10.1093/femsec/fiw032
  14. The Lin28 cold-shock domain remodels pre-let-7 microRNA vol.40, pp.15, 2012, https://doi.org/10.1093/nar/gks355
  15. Phyllosphere Metaproteomes of Trees from the Brazilian Atlantic Forest Show High Levels of Functional Redundancy vol.73, pp.1, 2017, https://doi.org/10.1007/s00248-016-0878-6
  16. Effects of a pulsed light-induced stress onEnterococcus faecalis vol.114, pp.1, 2013, https://doi.org/10.1111/jam.12029
  17. Cold-inducible RBM3 inhibits PERK phosphorylation through cooperation with NF90 to protect cells from endoplasmic reticulum stress vol.30, pp.2, 2016, https://doi.org/10.1096/fj.15-274639
  18. Contribution of Eutrema salsugineum Cold Shock Domain Structure to the Interaction with RNA vol.83, pp.11, 2018, https://doi.org/10.1134/S000629791811007X
  19. RNA-binding proteins in bacteria vol.16, pp.10, 2018, https://doi.org/10.1038/s41579-018-0049-5