DOI QR코드

DOI QR Code

Phase transitions and large electric field-induced strain in $BiAlO_3$-modified $Bi_{0.5}(Na,\;K)_{0.5}TiO_3 $ lead-free piezoelectric ceramics

Ullah, Aman;Ahn, Chang-Won;Hussain, Ali;Lee, Sun-Young;Lee, Hai-Joon;Kim, Ill-Won

  • Published : 20100000

Abstract

Lead-free piezoelectric (1 - x)($Bi_{0.5}(Na,\;K)_{0.5}TiO_3$)-$xBiAlO_3$ (abbreviated BNKT22–BA, x = 0.00-0.100) ceramics were synthesized using a conventional sintering technique. The incorporation of BA into the BNKT22 lattice was investigated by X-ray diffraction (XRD), and the dielectric and ferroelectric characterizations and electric field-induced strain behavior. Wefound that the structural and electrical properties of BNKT22 ceramics are significantly influenced by the presence of BA content. X-ray diffraction revealed a pure perovskite phase for x $\leqslant$ 0.050. A phase transformation from tetragonal to pseudocubic was observed at x = 0.050. As BA content increased, the maximum dielectric constant continuously decreased, and the depolarization temperature ($T_d$) shifted towards lower temperatures. The polarization and strain hysteresis loops indicate that the addition of BA significantly disrupts the ferroelectric order. The destabilization of the ferroelectric order is accompanied by an enhancement of bipolar and unipolar strains. In particular, a very large electric field-induced strain (S = 0.35%) and a normalized strain ($d^*_{33}$ = $S_{max}/E_{max}$ = 592 pm/V) were observed at x = 0.030, near the tetragonal–seudocubic phase boundary. These results suggested that the BNKT22–BA system is a promising candidate for high performance, lead-free electromechanical applications.

Keywords

References

  1. G.H. Haertling, J. Am. Ceram. Soc. 82 (1999) 797 https://doi.org/10.1111/j.1151-2916.1999.tb01840.x
  2. S.E. Park, T.R. Shrout, J. Appl. Phys. 82 (1997) 1804 https://doi.org/10.1063/1.365983
  3. Y. Li, K.S. Moon, C.P. Wong, Science 308 (2005) 1419 https://doi.org/10.1126/science.1110168
  4. L.E. Cross, Nature (London) 432 (2004) 24 https://doi.org/10.1038/nature03142
  5. A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Jpn. J. Appl. Phys. 38 (1999) 5564 https://doi.org/10.1143/JJAP.38.5564
  6. K. Yoshii, Y. Hiruma, H. Nagatha, T. Takenaka, Jpn. J. Appl. Phys. 45 (2006) 4493 https://doi.org/10.1143/JJAP.45.4493
  7. Y. Hiruma, H. Nagatha, T. Takenaka, J. Appl. Phys. 104 (2008) 124106 https://doi.org/10.1063/1.3043588
  8. P. Baettig, C.F. Schelle, R. LeSar, U.V. Waghmare, N.A. Spaldin, Chem. Mater. 17 (2005) 1376 https://doi.org/10.1021/cm0480418
  9. J. Zylberberg, A.A. Belik, E. Takayama-Muromachi, Z.-G. Ye, Chem. Mater. 19 (2007) 6385 https://doi.org/10.1021/cm071830f
  10. Y. Watanaba, Y. Hiruma, H. Nagata, T. Takenaka, Key Eng. Mater. 388 (2009) 229 https://doi.org/10.4028/www.scientific.net/KEM.388.229
  11. H. Yu, Z.-G. Ye, Appl. Phys. Lett. 93 (2008) 112902 https://doi.org/10.1063/1.2967335
  12. A.A. Belik, T. Wuernisha, T. Kamiyama, K. Mori, M. Maie, T. Nagai, Y. Matsui, E. Takayama-Muromachi, Chem. Mater. 18 (2006) 133 https://doi.org/10.1021/cm052020b
  13. W.-C. Lee, C.-Y. Huang, L.-K. Tsao, Y.-C. Wu, J. Eur. Ceram. Soc. 29 (2009) 1443
  14. K. Ito, K. Tezuka, Y. Hinatsu, J. Solid State Chem. 157 (2001) 173 https://doi.org/10.1006/jssc.2000.9071
  15. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, Sov. Phys. Solid State 2 (1961) 2651
  16. T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30 (1991) 2236 https://doi.org/10.1143/JJAP.30.2236
  17. D. Lin, K.W. Kwok, Curr. Appl. Phys. 10 (2010) 422 https://doi.org/10.1016/j.cap.2009.06.044
  18. Q. Zheng, C. Xu, D. Lin, D. Gao, K.W. Kwok, J. Phys. D: Appl. Phys. 41 (2008) 125411 https://doi.org/10.1088/0022-3727/41/12/125411
  19. S.T. Zhang, A.B. Kounga, E. Aulbach, Appl. Phys. Lett. 91 (2007) 112906 https://doi.org/10.1063/1.2783200
  20. S.T. Zhang, A.B. Kounga, E. Aulbach, Y. Deng, J. Am. Ceram. Soc. 91 (2008) 3950 https://doi.org/10.1111/j.1551-2916.2008.02778.x
  21. C.W. Tai, S.H. Choy, H.L.W. Chan, J. Am. Ceram. Soc. 91 (2008) 3335 https://doi.org/10.1111/j.1551-2916.2008.02592.x
  22. J. Suchanicz, Ferroelectrics 209 (1998) 561 https://doi.org/10.1080/00150199808018070
  23. D. Lin, Q. Zheng, C. Xu, K.W. Kwok, Appl. Phys. A 93 (2008) 549 https://doi.org/10.1007/s00339-008-4667-z
  24. J. Suchanicz, J. Kusz, H. Bohm, H. Duda, J.P. Mercurio, K. Konieczny, J. Eur. Ceram. Soc. 23 (2003) 1559 https://doi.org/10.1016/S0955-2219(02)00406-5
  25. D. Lin, K.W. Kwok, Curr. Appl. Phys. 9 (2009) 1369 https://doi.org/10.1016/j.cap.2009.03.001
  26. G. Fan, W. Lu, X. Wang, F. Liang, J. Xiao, J. Phys. D: Appl. Phys. 41 (2008) 035403 https://doi.org/10.1088/0022-3727/41/3/035403
  27. W. Jo, T. Granzow, E. Aulbach, J. Rodel, D. Damjanovic, J. Appl. Phys. 105 (2009) 094102 https://doi.org/10.1063/1.3121203
  28. D. Lin, K.W. Kwok, H.W.L. Chan, J. Phys. D: Appl. Phys. 40 (2007) 7523 https://doi.org/10.1088/0022-3727/40/23/042
  29. Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, T. Takenaka, Appl. Phys. Lett. 92 (2008) 262904 https://doi.org/10.1063/1.2955533

Cited by

  1. Structure and electrical properties of (1−x) (Bi0.5 (Na0.82K0.18)0.5) TiO3–x BiAlO3 lead-free piezoelectric ceramics vol.535, pp.None, 2010, https://doi.org/10.1016/j.jallcom.2012.04.050
  2. Influence of zirconium substitution on dielectric, ferroelectric and field-induced strain behaviors of lead-free 0.99[Bi1/2(Na0.82K0.18)1/2(Ti1−x Zr x )O3]-0.01LiSbO3 ceramics vol.61, pp.5, 2010, https://doi.org/10.3938/jkps.61.773
  3. Frequency-dependence of large-signal properties in lead-free piezoceramics vol.112, pp.1, 2010, https://doi.org/10.1063/1.4730600
  4. Giant electric-field-induced strains in lead-free ceramics for actuator applications - status and perspective vol.29, pp.1, 2010, https://doi.org/10.1007/s10832-012-9742-3
  5. Comparative study of phase structure and dielectric properties for K0.5Bi0.5TiO3BiAlO3 and LaAlO3BiAlO3 vol.210, pp.10, 2013, https://doi.org/10.1002/pssa.201228854
  6. Effect of lanthanum doping on the structural, ferroelectric, and strain properties of Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics vol.62, pp.7, 2010, https://doi.org/10.3938/jkps.62.1004
  7. Phase Structure, Microstructure and Electrical Properties of Lead-Free (1-x) [Na0.515K0.485]0.94Li0.06(Nb0.99Ta0.01)O3 - Bi vol.747, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/amr.747.781
  8. Fracture Toughness and Electrical Properties of 0.975Bi(Na0.78K0.22)TiO3-0.025BiAlO3Ceramics vol.52, pp.r10, 2010, https://doi.org/10.7567/jjap.52.101501
  9. Structure and electrical properties of (Bi0.5Na0.5)0.94Ba0.06TiO3-Bi0.5(Na0.82K0.18)0.5TiO vol.138, pp.1, 2010, https://doi.org/10.1016/j.matchemphys.2012.11.033
  10. Current Development in Lead-FreeBi0.5(Na,K)0.5TiO3-Based Piezoelectric Materials vol.2014, pp.None, 2014, https://doi.org/10.1155/2014/365391
  11. Local structure change evidenced by temperature-dependent elastic measurements: Case study on Bi1/2Na1/2TiO3-based lead-free relaxor piezoceramics vol.115, pp.8, 2010, https://doi.org/10.1063/1.4866092
  12. Ergodicity reflected in macroscopic and microscopic field-dependent behavior of BNT-based relaxors vol.115, pp.8, 2010, https://doi.org/10.1063/1.4867157
  13. Structure and electrical properties of (1 − x)(Na0.5Bi0.5)0.94Ba0.06TiO3-xSmAlO3 lead-free piezoelectric ceramics vol.26, pp.1, 2010, https://doi.org/10.1007/s10854-014-2372-6
  14. Tailoring ergodicity through selective A-site doping in the Bi1/2Na1/2TiO3-Bi1/2K1/2TiO3 system vol.117, pp.13, 2010, https://doi.org/10.1063/1.4916719
  15. Ergodicity and nonergodicity in La-doped Bi1/2(Na0.82K0.18)1/2TiO3 relaxors vol.66, pp.7, 2015, https://doi.org/10.3938/jkps.66.1077
  16. The Study on the Phase Transition and Piezoelectric Properties of Bi0.5(Na0.78K0.22)0.5TiO3-LaMnO3 Lead-free Piezoelectric Ceramics vol.52, pp.4, 2015, https://doi.org/10.4191/kcers.2015.52.4.237
  17. Microstructural and Ferroelectric Properties of Bi0.5(Na,K)0.5TiO3-Based Modified by Bi0.5Li0.5TiO3 Lead-Free Piezoelectric Ceramics vol.56, pp.9, 2010, https://doi.org/10.2320/matertrans.ma201553
  18. Enhanced piezoelectric properties near the morphotropic phase boundary in lead-free (1-x)(Bi0.5K0.5)TiO3-xBi(Ni0.5Ti0.5)O3 ceramics vol.15, pp.11, 2015, https://doi.org/10.1016/j.cap.2015.09.002
  19. Enhanced energy storage properties of lead-free (1−x)Bi0.5Na0.5TiO3–xSrTiO3 antiferroelectric ceramics by two-step sintering method vol.27, pp.12, 2010, https://doi.org/10.1007/s10854-016-5550-x
  20. Giant strain in lead-free relaxor/ferroelectric piezocomposite ceramics vol.68, pp.12, 2010, https://doi.org/10.3938/jkps.68.1439
  21. The first principle study of electronic and optical properties in rhombohedral BiAlO3 vol.30, pp.3, 2010, https://doi.org/10.1142/s0217984916500068
  22. Enhanced electrical properties and good thermal stability in K0.48Na0.52NbO3-LiNbO3-BiAlO3 lead-free piezoceramics vol.28, pp.12, 2010, https://doi.org/10.1007/s10854-017-6572-8
  23. Forced electrostriction by constraining polarization switching enhances the electromechanical strain properties of incipient piezoceramics vol.9, pp.None, 2010, https://doi.org/10.1038/am.2016.210
  24. Strategies of A Potential Importance, Making Lead-Free Piezoceramics Truly Alternative to PZTs vol.54, pp.2, 2010, https://doi.org/10.4191/kcers.2017.54.2.12
  25. The mechanical and electrical properties of modified-BNKT lead-free ceramics vol.187, pp.1, 2010, https://doi.org/10.1080/10584587.2018.1444888
  26. Giant room-temperature electrostrictive coefficients in lead-free relaxor ferroelectric ceramics by compositional tuning vol.6, pp.1, 2010, https://doi.org/10.1063/1.5006732
  27. Enhanced Electrocaloric Effect and Energy Storage Density of Nd-Substituted 0.92NBT-0.08BT Lead Free Ceramic vol.215, pp.7, 2010, https://doi.org/10.1002/pssa.201700915
  28. Dielectric and piezoelectric properties of Bi1/2Na1/2TiO3-SrTiO3 lead-free ceramics vol.41, pp.1, 2010, https://doi.org/10.1007/s10832-018-0161-y
  29. Large strain under low driving field in lead‐free relaxor/ferroelectric composite ceramics vol.102, pp.7, 2010, https://doi.org/10.1111/jace.16256
  30. Effect of Bi(Zn0.5Ti0.5)O3 substitution on structural and electromechanical properties of Bi0.5(Na0.78K0.22)0.5TiO vol.6, pp.9, 2010, https://doi.org/10.1088/2053-1591/ab33bb
  31. Electric field-induced strain in Sr(Hf0.5Zr0.5)O3-modified Bi0.5(Na0.8K0.2)0.5TiO3 piezoelectric ceramics vol.127, pp.7, 2010, https://doi.org/10.1063/1.5132536
  32. Effect of BiAlO3 doping on dielectric and ferroelectric properties of (Bi0.5Na0.42K0.08)0.96Sr0.04Ti0.975Nb0.025O3 lead-free ceramics vol.31, pp.20, 2010, https://doi.org/10.1007/s10854-020-04305-7
  33. Synthesis of textured Bi0.5(Na0.8K0.2)0.5TiO3-Ba0.844Ca0.156(Zr0.096Ti0.904)O3 lead-free ceramics for improving their electrical and energy storage properties vol.31, pp.20, 2010, https://doi.org/10.1007/s10854-020-04356-w
  34. Large Electric Field-Induced Strain Response Under a Low Electric Field in Lead-Free Bi1/2Na1/2TiO3-SrTiO3-BiAlO3 Ternary Piezoelectric Ceramics vol.49, pp.11, 2010, https://doi.org/10.1007/s11664-020-08436-9
  35. Re‐entrant ferroelectric relaxor phenomena in the (1 − x )[Bi 1/2 (Na 1/2 K 1/2 ) 1/2 TiO 3 ]‐ x PbZrO 3 system vol.104, pp.3, 2010, https://doi.org/10.1111/jace.17551
  36. Enhanced energy storage properties of 0.7Bi0·5Na0·5TiO3-0.3SrTiO3 ceramic through the addition of NaNbO3 vol.47, pp.21, 2010, https://doi.org/10.1016/j.ceramint.2021.07.275