Trends in Development of Thermally Conductive Polymer Composites

열 전도성 고분자 복합재료의 개발 동향

  • Hong, Jinho (Department of Chemical Engineering, Inha University) ;
  • Shim, Sang Eun (Department of Chemical Engineering, Inha University)
  • Received : 2010.03.17
  • Published : 2010.04.10

Abstract

Recently the use heat sink material grows where the polymer filled with thermal conductive fillers effectively dissipates heat generated from electronic components. Therefore the management of heat is directly related to the lifetime of electronic devices. For the purpose of improving thermal conductivity of composites, fillers with excellent thermaly conductive behavior are commonly used. Polymer composites filled with thermally conductive particles have advantages due to their processibility, cheap price, and durability to the corrosion. This paper aims to review the thermal interface materials and their model equations for predicting the thermal conductivity of polymer composites, and to introduce the commercial thermal conductive fillers and their applications.

마이크로 프로세서 및 항공 우주산업의 기술 발전에 따른 냉각 조건이 까다로워짐에 따라 각종 산업에서 열 전도 향상을 통한 기기 내에서 외부로의 열 배출은 최근 각광을 받고 있다. 특히 열 전도성 고분자 복합재료의 경우 매우 다양한 물질을 사용하여 그 요구조건에 맞는 부품의 생산이 가능하고 가공 편의성으로 인한 마이크로 부품에서부터 큰 부속품까지 그 사용 범위가 넓다. 방열 소재로 사용되는 고분자 복합재료의 열전도도 예측 모델 식을 알아보고 방열 소재에 대해 알아보며 상업적으로 많이 사용되고 있는 충전제에 대해 다룬다. 또한 최근의 고분자 복합재료 방열소재의 동향에 대해 알아본다.

Keywords

Acknowledgement

Supported by : (주)창성

References

  1. D. D. L. Chung, Appl. Therm. Engin., 21, 1593 (2001) https://doi.org/10.1016/S1359-4311(01)00042-4
  2. K. Sanada, Y. Tada, and Y. Shindo, Compos. Part A, 40, 724 (2009) https://doi.org/10.1016/j.compositesa.2009.02.024
  3. J. A. King, K. W. Tucker, B. D. Vogt, E. H. Weber, and C. Quan, Polym. Compos., 20, 643 (1999) https://doi.org/10.1002/pc.10387
  4. B. D. Cunningham, J. Huang, and D. G. Baid, Int. Mater. Rev., 52, 1 (2007) https://doi.org/10.1179/174328006X102556
  5. G. W. Lee, M. Park, J. Kim, J. I. Lee, and H. G. Yoon, Compos. Part A, 37, 727 (2006) https://doi.org/10.1016/j.compositesa.2005.07.006
  6. M. M. Tovanovich and E. E. Marotta, Thermal Spreading and Contact Resistances. in Heat Transfer Handbook, eds. A. Bejan, and A. D. Kraus, Wiley, New Jersey (2003)
  7. C. V. Madhusudana, Thermal Contact Conductance, Springer-Veralag, New York (1996)
  8. R. Prasher, Preceedings of the IEEE, 94, 1571 (2006) https://doi.org/10.1109/JPROC.2006.879796
  9. M. A. Lambert and L. S. Fletcher, J. Heat. Transf., 124, 405 (2002) https://doi.org/10.1115/1.1464565
  10. A. Iwabuchi, T. Shimizu, Y. Yoshino, T. Abe, K. Katagiri, I. Nitta, and K. Sadamori, Cryogenics, 36, 75 (1996) https://doi.org/10.1016/0011-2275(96)83806-9
  11. D. P. H. Hassleman and L. F. Johnson, J. Compos. Mater., 21, 508 (1987) https://doi.org/10.1177/002199838702100602
  12. L. C. Davis and B. E. Artz, J. Appl. Phys., 77, 4954 (1995) https://doi.org/10.1063/1.359302
  13. C.-W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, J. Appl. Phys., 81, 6692 (1997) https://doi.org/10.1063/1.365209
  14. J. D. Felske, Int. J. Heat Mass Transf., 47, 3453 (2004) https://doi.org/10.1016/j.ijheatmasstransfer.2004.01.013
  15. H. T. Davis, L. R. Valencourt, and C. E. Johnson, J. Amer. Ceramic Soc., 58, 446 (1975) https://doi.org/10.1111/j.1151-2916.1975.tb19020.x
  16. A. G. Every, Y. Tzou, D. P. H. Hassleman, and R. Raj, Acta Metallurgica et Materialia., 40, 123 (1992) https://doi.org/10.1016/0956-7151(92)90205-S
  17. P. E. Phelan and R. C. Niemann, J. Heat Transf., 120, 971 (1998) https://doi.org/10.1115/1.2825917
  18. D. Ganapathy, S. Singh, P. Phelan, and R. S. Prasher, J. Heat Transf., 127, 553 (2005) https://doi.org/10.1115/1.1915387
  19. I. H. Tavman, Powder Technol., 91, 63 (1997) https://doi.org/10.1016/S0032-5910(96)03247-0
  20. S. C. Cheng and R. I. Vachon, Int. J. Heat Mass Tran., 12, 249 (1969) https://doi.org/10.1016/0017-9310(69)90009-X
  21. T. Lewis and L. Nielson, J. Appl. Polym. Sci., 14, 1449 (1970) https://doi.org/10.1002/app.1970.070140604
  22. S. Kirkpatrick, Rev. Mod. Phys., 45, 574 (1973) https://doi.org/10.1103/RevModPhys.45.574
  23. R. Landauer, Electrical conductivity in inhomogeneous media, AIP Conf. Proc., vol. 40, Electrical Transport and Optical Properties of Inhomogeneous Media, eds. J. C. Garland and D. B. Tanner, 1, 2-45 (1978)
  24. B. Hakansson and R. G. Ross, J. Appl. Phys., 68, 3285 (1990) https://doi.org/10.1063/1.346379
  25. X.-G. Liang, J. R. Lukes, and C.-L. Tien, Heat Tran. Conf., 9, 33 (1998)
  26. X.-G. Liang and X. Ji, Int. J. Heat Mass Tran., 43, 3633 (2000) https://doi.org/10.1016/S0017-9310(99)00387-7
  27. R. Zallen, The Physics of Amorphous Solids, Wiley, New York (1983)
  28. A. E. Morozovskii and A. A. Snarskii, J. Exp. Theor. Phys., 82, 361 (1996)
  29. J. Wu and D. S. McLachlan, Phys. Rev. B., 56, 1236 (1997) https://doi.org/10.1103/PhysRevB.56.1236
  30. J. Hong, J. Lee, C. K. Hong, and S. E. Shim, Current Appl. Phys., 10, 359 (2010) https://doi.org/10.1016/j.cap.2009.06.028
  31. C.-W. Nan, G. Liu, Y. Lin, and M. Li, Appl. Phys. Lett., 85, 3549 (2004) https://doi.org/10.1063/1.1808874
  32. A. Devpura, P. E. Phelan, and R. S. Prasher, Percolation theory applied to the analysis of thermal interface materials in flip-chip technology, in: Proceedings of the Inter Society Conference on Thermal Phenomena, 21 (2000)
  33. C.-W Nan, Z. Shi, and Y. Lin, Chem. Phys. Lett., 375, 666 (2003) https://doi.org/10.1016/S0009-2614(03)00956-4
  34. P. Zhou and K. E. Goodson, Modeling and measurement of pressure-dependent junction-spreader thermal resistance for integrated circuits, in Proc. ASME Int. Mechanical Engineering Congr. And Exposition, 51 (2001)
  35. R. S. Prasher, J. C. Shipley, S. Prstic, P. Koning, and J. Wang, Rheological Study of Micro Particle Laden Polymeric Thermal Interface Materials: Experimental (Part 1) and Modeling (Part 2), Proc. Int. Mech. Engin. Congress Expo., ASME, New York (2002)
  36. R. S. Prasher, J. Shipley, S. Prstic, P. Koning, and J.-L. Wang, J. Heat Transf., 125, 1170 (2003) https://doi.org/10.1115/1.1621893
  37. A. V. Shenoy, Rheology of Filled Polymer System. Norwell, MA: Kluwer (1999)
  38. R. V. Prasher, IEEE Trans. Compon. Packag. Technol., 28, 230 (2005) https://doi.org/10.1109/TCAPT.2005.848492
  39. J. M. Ting and M. L. Lake, Microelectron Int., 38, 30 (1995)
  40. C. Zweben, JOM, 44, 15 (1992)
  41. C. Zweben, the future of advanced composite electronic packaging. In: D. D. L. Chung, editor, Materials for electronic packaging, Butterworth-Heinemann, Boston (1995)
  42. B. Nysten and J. P. Issi, Compos. Part A, 21, 339 (1990)
  43. Y. S. Song and J. R. Youn, Carbon, 43, 1378 (2005) https://doi.org/10.1016/j.carbon.2005.01.007
  44. G.-W. Lee, M. Park, J. Kim, J. I. Lee, and H. G. Yoon, Compos. Part A, 37, 727 (2006) https://doi.org/10.1016/j.compositesa.2005.07.006
  45. Y. Chen and J. Ting, Carbon, 40, 359 (2002) https://doi.org/10.1016/S0008-6223(01)00112-9
  46. E. Guyer, Handbook of Applied Thermal Design, Chapter 6, CRC Press, Boca Raton, FL, (1999)
  47. S. K. Bhattacharya, Metal-filled polymers (properties and applications). Marcel Dekker, New-York (1986)
  48. F. Lux, J. Mater. Sci., 28, 285 (1993) https://doi.org/10.1007/BF00357799
  49. B. Bridge, M. J. Folkes, and B. R. Wood, J. Phys. D: Appl. Phys., 23, 890 (1990) https://doi.org/10.1088/0022-3727/23/7/021
  50. M. Q. Zhang, J. R. Xu, H. M. Zeng, Q. Huo, Z. Y. Zhang, and F. C. Yun, J. Mater. Sci., 30, 4226 (1995) https://doi.org/10.1007/BF00361501
  51. F. Carmona and C. Mouney, J. Mater. Sci., 27, 1322 (1992) https://doi.org/10.1007/BF01142046
  52. I.-G. Chen and W. B. Jonson, J. Mater. Sci., 26, 1565 (1991) https://doi.org/10.1007/BF00544665
  53. Y. P. Mamunya, V. V. Davydenko, P. Pissis, and E. V. Lebedev, Eur. Polym. J., 38, 1887 (2002) https://doi.org/10.1016/S0014-3057(02)00064-2
  54. G. A. Slack, Phys. Rev., 126, 427 (1962) https://doi.org/10.1103/PhysRev.126.427
  55. G. A. Slack, J. Phys. Chem. Solids, 34, 321 (1973) https://doi.org/10.1016/0022-3697(73)90092-9
  56. P. Greil, Adv. Eng. Mater., 4, 247 (2002) https://doi.org/10.1002/1527-2648(20020503)4:5<247::AID-ADEM247>3.0.CO;2-N
  57. C.-Y. Hsieh and S.-L. Chung, J. Appl. Polym. Sci., 102, 4734 (2006) https://doi.org/10.1002/app.25000
  58. W. Zhou, S. Qi, H. Li, and S. Shao, Thermochim. Acta, 452, 36 (2007) https://doi.org/10.1016/j.tca.2006.10.018
  59. T. M. Tritt, Thermal Conductivity-Theory, Properties, and Applications, Springer Science, New York (2003)
  60. D. G. Brunner and K. H. Wienand, Interceram, 37, 29 (1988)
  61. N. Ichinose, Mater. Sci. Forum, 34, 663 (1988)
  62. W. Zhou, C. Wang, T. Ai, Ke, W. F. Zhao, and H. Gu, Compos. Part A, 40, 830 (2009) https://doi.org/10.1016/j.compositesa.2009.04.005
  63. S. Yu, P. Hing, and X. Hu, Compos. Part A, 33, 289 (2002) https://doi.org/10.1016/S1359-835X(01)00107-5
  64. B. Lee and G. Dai, J. Mater. Sci., 44, 4848 (2009) https://doi.org/10.1007/s10853-009-3739-6
  65. T. C. Clancy and T. S. Gates, Polymer, 47, 5990 (2006) https://doi.org/10.1016/j.polymer.2006.05.062
  66. W. Zhou, S. Qi, Q. An, H. Zhao, and N. Liu, Mater. Res. Bull., 42, 1863 (2007) https://doi.org/10.1016/j.materresbull.2006.11.047
  67. W. Zhou, S. Qi, C. Tu, H. Zhao, C. Wang, and J. Kou, J. Appl. Polym. Sci., 104, 1312 (2007) https://doi.org/10.1002/app.25789
  68. Q. Mu, S. Feng, and G. Diao, Polym. Compos., 28, 125 (2007) https://doi.org/10.1002/pc.20276
  69. S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, Appl. Phys. Lett., 79, 2252 (2001) https://doi.org/10.1063/1.1408272
  70. M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnson, and J. E. Fischer, Appl. Phys. Lett., 80, 2767 (2002) https://doi.org/10.1063/1.1469696
  71. K. W. Garrett and H. M. Rosenberg, J. Phys. D: Appl. Phys., 7, 1247 (1974) https://doi.org/10.1088/0022-3727/7/9/311
  72. S. Berber, Y. K. Kwon, and D. Tam$\acute{a}$nek, Phys. Rev. Lett., 84, 4613 (2000) https://doi.org/10.1103/PhysRevLett.84.4613
  73. D. J. Yang, S. G. Wang, Q. Zhang, P. J. Sellin, and G. Chen, Phys. Lett. A, 329, 207 (2004) https://doi.org/10.1016/j.physleta.2004.05.070
  74. F. H. Gojny, M. H. G. Wichmann, B. Fiedler, I. A. Kinloch, W. Bauhofer, and A. H. Windle, Polymer, 47, 2036 (2006) https://doi.org/10.1016/j.polymer.2006.01.029
  75. T. Kashiwagi, E. Grulke, J. Hildong, K. Groth, R. Harris, and K. Butler, Polymer, 45, 4227 (2004) https://doi.org/10.1016/j.polymer.2004.03.088
  76. H. Xia and M. Song, Soft Matter., 1, 386 (2005) https://doi.org/10.1039/b509038e
  77. Y. Xu and G. Ray, Compos. Part A, 37, 114, (2006) https://doi.org/10.1016/j.compositesa.2005.04.009
  78. M. B. Bryning, D. E. Milkie, M. F. Islam, J. M. Kikkawa, and A. G. Yodh, Appl. Phys. Lett., 87, 161909 (2005) https://doi.org/10.1063/1.2103398
  79. H. Huang, C. H. Liu, Y. Wu, and S. S. Fan, Adv. Mater., 17, 1652 (2005) https://doi.org/10.1002/adma.200500467
  80. P. C. Song, C. H. Liu, and S. S. Fan, Appl. Phys. Lett., 88, 153111 (2006) https://doi.org/10.1063/1.2194267
  81. A. Yu, M. E. Itkis, E. Bekyarova, and R. C. Haddon, Appl. Phys. Lett., 89, 133102 (2006) https://doi.org/10.1063/1.2357580
  82. J. I. Lee and H. T. Jung, Korean Chem. Eng. Res., 46, 7 (2008)
  83. M. Kim, J. Hong, J. Lee, C. K. Hong, and S. E. Shim, J. Colloid Interf. Sci., 322, 321 (2008) https://doi.org/10.1016/j.jcis.2008.03.045
  84. M. Kim, C. K. Hong, S. Choe, and S. E. Shim, J. Polym. Sci. Polym. Chem., 45, 4413 (2007) https://doi.org/10.1002/pola.22190
  85. J. Hong, C. K. Hong, S. Choe, and S. E. Shim, J. Polym. Sci. Polym. Chem., 45, 3477 (2007) https://doi.org/10.1002/pola.22122
  86. J. Hong, J. Lee, C. K. Hong, and S. E. Shim, J. Therm. Anal. Calorim., to be published (2010)
  87. L. Kumari, T. Zhang, G. H. Du, W. Z. Li, Q. W. Wang, A. Datye, and K. H. Wu, Compos. Sci. Technol., 68, 2178 (2008) https://doi.org/10.1016/j.compscitech.2008.04.001
  88. Y. Kai and G. Mingyuan, Compos. Part A, 41, 215 (2010) https://doi.org/10.1016/j.compositesa.2009.10.019