Influence of air-oxidation on electric double layer capacitances of multi-walled carbon nanotube electrodes

Seo, Min-Kang;Park, Soo-Jin

  • Published : 20100000

Abstract

In this work, air-oxidized multi-walled carbon nanotube (MWCNT) electrodes have been prepared from catalytically grown MWCNTs of high purity and narrow diameter distribution. The experimental results show that air-oxidation modifies the intrinsic structure of individual MWCNTs and a little improves the dispersity of the MWCNTs. The specific capacitances of the electrodes in electric double layer capacitors (EDLCs) based on oxidized MWCNTs are obviously improved through air-oxidation. The specific capacitance of 50 F/g is obtained in the air-oxidized MWCNTs at 600 ${^{\circ}C}$ on a single cell device with 35 wt% $H_2SO_4$ as an electrolyte. This is probably increased BET specific surface area and mesopore volume of the oxidized MWCNT electrode materials of EDLCs. These properties are, therefore highly desirable for the development of electrochemical capacitors with high power and long cycle life.

Keywords

References

  1. H.L.F. von Helmholtz, Ann. Phys. 3 (1879) 337
  2. Y. Kibi, T. Saito, M. Kurata, J. Power Sources 60 (1996) 219 https://doi.org/10.1016/S0378-7753(96)80014-0
  3. S. Nomoto, H. Nakata, K. Yoshioka, A. Yoshida, H. Yoneda, J. Power Sources 97-98 (2001) 807 https://doi.org/10.1016/S0378-7753(01)00612-7
  4. S. Kim, S.J. Park, J. Power Sources 159 (2006) 42 https://doi.org/10.1016/j.jpowsour.2006.04.041
  5. S. Iijima, Nature 354 (1991) 56 https://doi.org/10.1038/354056a0
  6. C.T. Hsieh, H.H. Teng, Carbon 40 (2002) 667 https://doi.org/10.1016/S0008-6223(01)00182-8
  7. R.Z. Ma, J. Liang, B.Q. Wei, B. Zhang, C.L. Xu, D.H. Wu, J. Power Sources 84 (1999) 126 https://doi.org/10.1016/S0378-7753(99)00252-9
  8. R. Saito, G. Dresselhaus, M.S. Dresselhaus, J. Appl. Phys. 73 (1993) 494 https://doi.org/10.1063/1.353358
  9. M.S. Dresselhaus, G. Dresselhaus, R. Saito, Solid State Commun. 84 (1992) 201 https://doi.org/10.1016/0038-1098(92)90325-4
  10. T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Nature 382 (1996) 54 https://doi.org/10.1038/382054a0
  11. Q. Jiang, M.Z. Qu, G.M. Zhou, B.L. Zhang, Z.L. Yu, Mater. Lett. 57 (2002) 988 https://doi.org/10.1016/S0167-577X(02)00911-4
  12. C.S. Li, D.Z. Wang, T.X. Liang, G.T. Li, X.F. Wang, M.S. Cao, J. Liang, Sci. China Ser. E-Technol. Sci. 46 (2003) 349 https://doi.org/10.1360/03ye0067
  13. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60 (1938) 309 https://doi.org/10.1021/ja01269a023
  14. M.M. Dubinin, G.M. Plavnik, Carbon 6 (1968) 183 https://doi.org/10.1016/0008-6223(68)90302-3
  15. E.P. Barret, P.B. Joyner, P. Halenda, J. Am. Chem. Soc. 73 (1951) 373 https://doi.org/10.1021/ja01145a126
  16. C.M. Niu, E.K. Sichel, R. Hoch, Appl. Phys. Lett. 70 (1997) 1480 https://doi.org/10.1063/1.118568
  17. M.S.P. Shaffer, X. Fan, A.H. Windle, Carbon 36 (1998) 1603 https://doi.org/10.1016/S0008-6223(98)00130-4
  18. S. Kim, S.J. Park, Electrochim. Acta 53 (2008) 4082 https://doi.org/10.1016/j.electacta.2007.08.067
  19. P.M. Ajayan, T.W. Ebbesen, T. Lchihashi, S. Iijima, K. Tanigaki, H. Hiura, Nature 362 (1993) 522 https://doi.org/10.1038/362522a0
  20. C. Li, D. Wang, T. Liang, X. Wang, J. Wu, X. Hu, J. Liang, Powder Technol. 142 (2004) 175 https://doi.org/10.1016/j.powtec.2004.04.037
  21. N. Yao, V. Lordi, S.X.C. Ma, E. Dujardin, A. Krishnan, M.M.J. Treacy, T.W. Ebbesen, J. Mater. Res. 13 (1998) 2432 https://doi.org/10.1557/JMR.1998.0338
  22. M.K. Seo, S.J. Park, S.K. Lee, J. Colloid Interf. Sci. 285 (2005) 3063
  23. M. Seredych, D. Hulicova-Jurcakova, G.O. Lu, T.J. Bandosz, Carbon 46 (2008) 1475 https://doi.org/10.1016/j.carbon.2008.06.027