DOI QR코드

DOI QR Code

High-speed High-resolution Terahertz Spectrometers

Kim, Young-Chan;Yee, Dae-Su;Yi, Min-Woo;Ahn, Jae-Wook

  • Published : 20100100

Abstract

We demonstrate and characterize both asynchronous optical sampling terahertz time-domain spectroscopy (AOS THz-TDS) and terahertz frequency comb spectroscopy (TFCS) as high-speed, high-resolution terahertz (THz) spectroscopy. Two mode-locked femtosecond (fs) lasers with slightly different repetition frequencies are used without a mechanical delay stage to generate and detect THz pulses. The repetition frequencies of the two fs lasers are stabilized by use of two phase-locked loops sharing the same reference oscillator. For AOS THz-TDS, the difference frequency between the repetition frequencies is optimized, and the signal-to-noise ratio is measured as a function of the measurement time. The spectra of a THz frequency comb and its individual modes are measured using TFCS. A spectral resolution of 100 MHz is obtained in both types of spectroscopy.

Keywords

References

  1. K. Liu, J. Xu, T. Yuan and X.-C. Zhang, Phys. Rev. B 73, 155330 (2006) https://doi.org/10.1103/PhysRevB.73.155330
  2. M. Yi, K. Lee and J. Ahn, J. Korean Phys. Soc. 51, 475 (2007) https://doi.org/10.3938/jkps.51.475
  3. M. Yi, K. H. Lee, I. Maeng, J. H. Son, R. D. Averitt and J. Ahn, Jpn. J. Appl. Phys. 47, 202 (2008) https://doi.org/10.1143/JJAP.47.202
  4. N. E. Yu, C. Jung, C. S. Kee, Y. L. Lee, B. A. Yu, D. K. Ko, J. Lee, W. J. Lee, J. E. Kim and H. Y. Park, J. Korean Phys. Soc. 51, 493 (2007) https://doi.org/10.3938/jkps.51.493
  5. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor and R. D. Averitt, Nature 444, 597 (2006) https://doi.org/10.1038/nature05343
  6. J. Ahn, A. V. Efimov, R. D. Averitt and A. J. Taylor, Opt. Express 11, 2486 (2003) https://doi.org/10.1364/OE.11.002486
  7. B. B. Jin, P. Kuzel, F. Kadlec, T. Dahm, J. M. Redwing, A. V. Pogrebnyakov, X. X. Xi and N. Klein, Appl. Phys. Lett. 87, 092503 (2005) https://doi.org/10.1063/1.2034107
  8. F. N. Keutsch, M. G. Brown, P. B. Petersen, R. J. Saykally, M. Geleijns and A. V. D. Avoird, J. Chem. Phys. 114, 3994 (2001) https://doi.org/10.1063/1.1337051
  9. C. Kistner, A. Andre, T. Fischer, A. Thoma, C. Janke, A. Bartels, T. Gisler, G. Maret and T. Dekorsy, Appl. Phys. Lett. 90, 233902 (2007) https://doi.org/10.1063/1.2743401
  10. B J. Ahn, D. N. Hutchinson, C. Rangan and P. H. Bucksbaum, Phys. Rev. Lett. 86, 1179 (2001) https://doi.org/10.1103/PhysRevLett.86.1179
  11. B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin and C. R. Stanley, Nature 410, 60 (2001) https://doi.org/10.1038/35065032
  12. G. Kim, S. Jeon, J. Kim and Y. Jin, Rev. Sci. Instrum. 79, 106102 (2008) https://doi.org/10.1063/1.2995763
  13. H. Hoshina, T. Seta, T. Iwamoto, I. Hosako, C. Otani and Y. Kasai, J. Quant. Spectrosc. Radiat. Transfer 109, 2303 (2008) https://doi.org/10.1016/j.jqsrt.2008.03.005
  14. T. Yasui, E. Saneyoshi and T. Araki, Appl. Phys. Lett. 87, 061101 (2005) https://doi.org/10.1063/1.2008379
  15. C. Janke, M. Forst, M. Nagel, H. Kurz and A. Bartels, Opt. Lett. 30, 1405 (2005) https://doi.org/10.1364/OL.30.001405
  16. A. Bartels, A. Thoma, C. Janke, T. Dekorsy, A. Dreyhaupt, S. Winnerl and M. Helm, Opt. Express 14, 430 (2006) https://doi.org/10.1364/OPEX.14.000430
  17. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke and T. Dekorsy, Rev. Sci. Instrum. 78, 035107 (2007) https://doi.org/10.1063/1.2714048
  18. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama and T. Araki, Appl. Phys. Lett. 88, 241104 (2006) https://doi.org/10.1063/1.2209718
  19. S. Yokoyama, R. Nakamura, M. Nose, T. Araki and T. Yasui, Opt. Express 16, 13052 (2008) https://doi.org/10.1364/OE.16.013052
  20. P. A. Elzinga, F. E. Lytle, Y. Jian, G. B. King and N. M. Laurendeau, Appl. Spectrosc. 41, 2 (1987) https://doi.org/10.1366/0003702874868025
  21. P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King and N. M. Laurendeau, Appl. Opt. 26, 4303 (1987) https://doi.org/10.1364/AO.26.004303
  22. M. van Exter, C. Fattinger and D. Grischkowsky, Opt. Lett. 14, 1128 (1989) https://doi.org/10.1364/OL.14.001128

Cited by

  1. High-speed terahertz time-domain spectroscopy based on electronically controlled optical sampling. vol.35, pp.22, 2010, https://doi.org/10.1364/ol.35.003715
  2. Terahertz Birefringence in Zinc Oxide vol.50, pp.3, 2011, https://doi.org/10.7567/jjap.50.030203
  3. Terahertz lens made out of natural stone vol.52, pp.36, 2010, https://doi.org/10.1364/ao.52.008670
  4. High-resolution broadband terahertz spectroscopy via electronic heterodyne detection of photonically generated terahertz frequency comb. vol.39, pp.19, 2010, https://doi.org/10.1364/ol.39.005669
  5. Terahertz polarization spectroscopy in the near-field zone of a sub-wavelength-scale metal slit vol.24, pp.19, 2016, https://doi.org/10.1364/oe.24.021276
  6. Enhanced bandwidth, high gain, low noise transimpedance amplifier for asynchronous optical sampling systems vol.90, pp.6, 2010, https://doi.org/10.1063/1.5089117