DOI QR코드

DOI QR Code

Effect of Corticosterone Administration on Small Intestinal Weight and Expression of Small Intestinal Nutrient Transporter mRNA of Broiler Chickens

  • Hu, X.F. (Henan Key Lab for Animal Immunology, Henan Academy of Agricultural Science) ;
  • Guo, Yuming (The State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Huang, B.Y. (The State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Zhang, L.B. (The State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Bun, S. (The State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Liu, D. (The State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Long, F.Y. (The State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Li, J.H. (The State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Yang, X. (The State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Jiao, P. (The State Key Lab of Animal Nutrition, College of Animal Science and Technology, China Agricultural University)
  • Received : 2009.05.12
  • Accepted : 2009.08.21
  • Published : 2010.02.01

Abstract

The effects of corticosterone (CORT) administration on the weight of small intestine and the expression of nutrient transporter mRNA in the small intestine of broiler chickens (Gallus gallus domesticus) were investigated. One hundred and eight sevenday-old birds were randomly divided into two equal groups comprising a control group (CTRL) and an experimental group (CORT). CTRL birds were fed a basal diet and the CORT birds were fed a basal diet containing 30 mg corticosterone/kg from d 8 to 21. At 21 d of age, average daily feed intake (ADFI), serum corticosterone level, small intestinal absolute wet weight and relative weight, and relative abundance of SGLT1, CaBP-D28k, PepT1 mRNA in the duodenum and L-FABP mRNA in the jejunum were determined. The results showed that serum corticosterone level, liver weight and small intestinal relative weight (small intestinal wet weight/body weight) of CORT chickens were about 30.15%, 26.72% and 42.20% higher, respectively, than in the CTRL group (p<0.05). CORT birds had relative mRNA abundance of CaBP-D28k and PepT1 in the duodenum, and L-FABP in the jejunum which was 1.77, 1.37 and 1.94 fold higher, respectively, than in the CTRL group (p<0.05); the relative abundance of SGLT1 was 1.67 fold higher than in the CTRL group (p = 0.097). ADFI, small intestinal wet weight and length in CORT-treated broiler chickens was about 29.11%, 31.12% and 12.35% lower, respectively, than in the CTRL group (p<0.05). In conclusion, corticosterone administration lowered the wet weight but increased the relative weight of the small intestine and the expression of intestinal nutrient transporter mRNA of broiler chickens.

Keywords

References

  1. Banaszak, L., N. Winter and Z. Xu. 1994. Lipid-binding protein: a family of fatty acid and retinoid transport protein. Adv. Protein Chem. 45:89-151 https://doi.org/10.1016/S0065-3233(08)60639-7
  2. Bottje, W. G. and P. C. Harrison. 1985. The effect of tap water carbonated. Poult. Sci. 64:107 https://doi.org/10.3382/ps.0640107
  3. Bronner, F. 1987. Intestinal calcium absorption: Mechanisms and applications. J. Nutr. 117:1347-1352
  4. Chance, W. T., T. Foley-Nelson, I. Thomas and A. Balasubramaniam. 1997. Prevention of parenteral nutritioninduced gut hypoplasia by coinfusion of glucagon-like peptide-2. Am. J. Physiol. 273:G559-G563
  5. Covasa, M. and J. M. Forbes. 1995. Selection of foods by broiler chickens following corticosterone administration. Br. Poult. Sci. 36:489-501 https://doi.org/10.1080/00071669508417794
  6. Craviso, G. L., K. P. Garrett and T. L. Clemens. 1987. 1, 25-Dihydroxy vitamin D3 induces the synthesis of vitamin Ddependent calcium-binding protein in cultured chick kidney cells. Endocrinology 120:894-902 https://doi.org/10.1210/endo-120-3-894
  7. Daniel, H. 2004. Molecular and integrative physiology of intestinal peptide transport. Annu. Rev. Physiol. 66:361-384 https://doi.org/10.1146/annurev.physiol.66.032102.144149
  8. Davis, K. W., A. Cepeda-Benito, J. H. Harraid and P. J. Wellman. 2005. Plasma corticosterone in the rat in response to nicotine and saline injections in a context previously paired or unpaired with nicotine. Psychopharmacology 180:466-472 https://doi.org/10.1007/s00213-005-2185-7
  9. Dibner, J. J., M. L. Kitchell, C. A. Atwell and F. J. Ivey. 1996. The effects of dietary ingredients and age on the microscopic structure of the gastrointestinal tract in poultry. J. Appl. Poult. Res. 5:70-77
  10. Dudley, M. A., L. J. Wykes, A. W. Dudley, JR., D. G. Burrin, B. L. Nichols, J. Rosenberger, F. Jahoor, W. C. Heird and P. J. Reeds. 1998. Parenteral nutrition selectively decreases protein synthesis in the small intestine. Am. J. Physiol. 274:G131- G137
  11. Gal-Garber, O., S. J. Mabjeesh, D. Sklan and Z. Uni. 2000. Partial sequence and expression of the gene forand activity of the sodium glucose transporter in the small intestine of fed, starved and refed chickens. J. Nutr. 130:2174-2179
  12. Garriga, C., M. Moreto and J. M. Planas. 2000. Effects of resalination on intestinal glucose transport in chickens adapted to low $Na^+$ intakes. Exp. Physiol. 85:371-378 https://doi.org/10.1017/S095806700002039X
  13. Garriga, C., C. M. Vazquez, V. Ruiz-Gutierrez and J. M. Planas. 2002. Regional differences in transport, lipid composition and fluidity of apical membranes of small intestine of chicken. Poult. Sci. 81:537-545
  14. Hansen, K. K., M. M. Beck, S. E. Scheideler and E. E. Blankenship. 2004. Exogenous estrogen boosts circulating estradiol concentrations and calcium uptake by duodenal tissue in heat-stressed hens. Poult. Sci. 83:895-900
  15. Howard, T., R. A. Goodlad, J. R. F. Walters, D. Ford and B. H. Hirst. 2004. Increased expression of specific intestinal amino acid and Peptide transporter mRNA in rats fed by TPN is reversed by GLP-2. J. Nutr. 134:2957-2964
  16. Hu, X. F. and Y. M. Guo. 2008. Corticosterone administration alters small intestinal morphology and function of broiler chickens. Asian- Aust. J. Anim. Sci. 21:1773-1778
  17. Ihara, T., T. Tsujikawa, Y. Fujiyama and T. Bamba. 2000. Regulation of PepT1 Peptide Transporter expression in the rat's small intestine under malnourished conditions. Digestion 61:59-67 https://doi.org/10.1159/000007736
  18. Kellett, G. L. 2001. The facilitated component of intestinal glucose absorption. J. Physiol. 531:585-595 https://doi.org/10.1111/j.1469-7793.2001.0585h.x
  19. Lin, H., E. Decuypere and J. Buyse. 2004a. Oxidative stress induced by corticosterone administration in broiler chickens (Gallus gallus domesticus) 1. Chronic exposure. Comp. Biochem. Physiol. 139B:737-744 https://doi.org/10.1016/j.cbpc.2004.09.013
  20. Lin, H., E. Decuypere and J. Buyse. 2004b. Oxidative stress induced by corticosterone administration in broiler chickens (Gallus gallus domesticus) 2. Short-term effect. Comp. Biochem. Physiol. 139B:745-751 https://doi.org/10.1016/j.cbpc.2004.09.014
  21. Lin, H., S. J. Sui, H. C. Jiao, K. J. Jiang, J. P. Zhao and H. Dong. 2007. Effects of diet and stress mimicked by corticosterone administration on early postmortem muscle metabolism of broiler chickens. Poult. Sci. 86:545-554
  22. Lin, H., S. J. Sui, H. C. Jiao, J. Buyse and E. Decuypere. 2006. Impaired development of broiler chickens by stress mimicked by corticosterone exposure. Comp. Biochem. Physiol. 143A: 400-405 https://doi.org/10.1016/j.cbpa.2005.12.030
  23. Malheiros, R. D., V. M. B. Moraes, A. Collin, E. Ddcuypere and J. Buyse. 2003. Free diet selection by broilers as influenced by dietary macronutrient ratio and Corticosterones supplementation. 1. Diet selection, organ weights, and plasma metabolites. Poult. Sci. 82:123-131
  24. Mickey, A. L., S. A. Laiche, J. R. Thompson, A. L. Pond and E. D. Peebles. 1996. Continuous infusion of adrenocorticotropin elevates circulating lipoprotein, cholesterol and corticosterone concentrations in chickens. Poult. Sci. 75:1428-1432 https://doi.org/10.3382/ps.0751428
  25. Mitchell, M. A. and A. J. Carlisle. 1992. The effect of chronic exposure to elevated environmental temperature on intestinal morphology and nutrient absorption in the domestic fowl (Gullus domesticus). Comp. Biochem. Physiol. 101A:137-142 https://doi.org/10.1016/0300-9629(92)90641-3
  26. Moberg, G. P. and J. A. Mench. 2000. The biology of animal stress: Basic principlies and implications for animal welfare. CABI Publishing, Wallingford, UK, New York, NY, USA. pp. 3-6
  27. Moran, E. T. 1985. Digestion and absorption of carbohydrates in fowl and events through perinatal development. J. Nutr. 115: 665-674
  28. Morrow, L. E., J. L. McClellan, C. A. Conn and M. J. Kluger. 1993. Glucocorticoids alter fever and IL-6 responses to psychological stress and to lipopolysaccharide. Am. J. Physiol. 264: R1010-R1016
  29. Naruhashi, K., Y. Sai, I. Tamai, N. Suzuki and A. Tsuji. 2002. PepT1 mRNA expression is induced by starvation and its level correlates with absorptive transport of cefadroxial longitudinally in the rat intestine. Pharm. Res. 19:1417-1423 https://doi.org/10.1023/A:1020436028194
  30. Nasir, A., R. P. Moudgal and N. B. Singh. 1999. Involvement of corticosterone in food intake, food passage time and in vivo uptake of nutrients in the chicken (Gallus domesticus). Br. Poult. Sci. 40:517-522 https://doi.org/10.1080/00071669987296
  31. Odihambo Mumma, J., J. P. Thaxton, Y. Vizzier-Thaxton and W. L. Dodson. 2006. Physiological stress in laying hens. Poult. Sci. 85:761-769
  32. Ogihara, H., T. Suzuki, Y. Nagamachi, K. I. Inui and K. Takata. 1999. Peptide transporter in the rat small intestine: ultrastructural localization and the effect of starvation and administration of amino acid. Histochem. J. 31:169-174 https://doi.org/10.1023/A:1003515413550
  33. Olanrewaju, H. A., S. Wongpichet, J. P. Thaxton, W. A. Dozier and S. L. Branton. 2006. Stress and acid-base balance in chickens. Poult. Sci. 85:1266-1274
  34. Pan, J., Q. Xiang and S. Ball. 2000. Use of a novel real-time quantitative reverse transcription-polymerase chain reaction method to study the effects of cytokines on cytochrome P450 mRNA expression in mouse liver. Drug Metab. Dispos. 28:709-713
  35. Pinheiro, D. F., V. C. Cruz, J. R. Sartori and M. L. M. Vicentini Paulino. 2004. Effect of early feed restriction and enzyme supplementation on digestive enzyme activities in broilers. Poult. Sci. 83:1544-1550
  36. Post, J., J. M. Rebel and A. A. H. M. Ter Huurne. 2003. Physiological effects of elevated plasma corticosterone concentrations in broiler chickens. An alternative means by which to assess the physiological effects of stress. Poult. Sci. 82:1313-1318
  37. Prows, D. R., E. J. Murphy and F. Schroeder. 1995. Intestinal and liver fatty acid-binding proteins differentially affect fatty acid uptake and esterification in L-cell. Lipids 30:907-910 https://doi.org/10.1007/BF02537481
  38. Pung, T., K. Zimmerman, B. Klein and M. Ehrich. 2003. Corticosterone in drinking water: altered kinetics of a single oral dose of corticosterone and concentrations of plasma sodium, albumin, globulin, and total protein. Toxicol. Ind. Health 19:171-182 https://doi.org/10.1191/0748233703th182oa
  39. Puvadolpirod, S. and J. P. Thaxton. 2000a. Model of physiological stress in chickens 1. Response parameters. Poult. Sci. 79:363- 369
  40. Puvadolpirod, S. and J. P. Thaxton. 2000b. Model of physiological stress in chickens 2. Dosimetry of adrenocorticotropin. Poult. Sci. 79:370-376
  41. Puvadolpirod, S. and J. P. Thaxton. 2000c. Model of physiological stress in chickens 3. Temporal patterns of reponse. Poult. Sci. 79:370-376
  42. Richards, M. P., S. M. Poch, C. N. Coon, R. W. Rosebrough, C. M. Ashwell and J. P. McMurtry. 2003. Feed restriction significantly alters lipogenic gene expression in broiler breeder chickens. J. Nutr. 133:707-715
  43. Spratt, R. S., B. W. McBride, H. S. Bayley and S. Leeson. 1990. Energy metabolism of broiler breeder hens. 2. Contribution of tissues to total heat production in fed and fasted hens. Poult. Sci. 69:1348-1356 https://doi.org/10.3382/ps.0691348
  44. Thompson, K. L. and T. J. Applegate. 2006. Feed withdraw alters small-intestinal morphology and mucus of broilers. Poult. Sci. 85:1535-1540
  45. Uni, Z., S. Ganot and D. Sklan. 1998. Post-hatch development of mucosal function in the broiler small intestines. Poult. Sci. 77:75-82
  46. Wasserman, R. H. and C. S. Fullmer. 1995. Vitamin D and intestinal calcium transport: facts, speculation and hypotheses. J. Nutr. 125:1971s-1979s
  47. Wood, S. and P. Frayhum. 2003. Glucose transporters (GLUT and SGLT): expanded families of sugar transport protein. Br. J. Nutr. 89: 3-9 https://doi.org/10.1079/BJN2002763
  48. Yamauchi, K., H. Kamisoyama and Y. Isshiki. 1996. Effects of fasting and refeeding on structures of the intestinal villus and epithelial cell in White Leghorn hens. Br. Poult. Sci. 37:909- 921 https://doi.org/10.1080/00071669608417922
  49. Yamauchi, K. and P. Tarachai. 2000. Change in intestinal villu, cell area and intracellular autophagic vacuoles related to intestinal function in chickens. Br. Poult. Sci. 41:116-123 https://doi.org/10.1080/00071660050194902
  50. Ziegler, T. R., M. E. Evans, C. Fernandez-Estivariz and D. P. Jones. 2003. Trophic and cytoprotective nutrition for intestinal adaptation, mucosal repair, and barrier function. Annu. Rev. Nutr. 23:229-261 https://doi.org/10.1146/annurev.nutr.23.011702.073036

Cited by

  1. Forsythia suspensa extract attenuates corticosterone-induced growth inhibition, oxidative injury, and immune depression in broilers vol.93, pp.7, 2014, https://doi.org/10.3382/ps.2013-03772
  2. ) improved blood and hepatic antioxidant indices in laying hens receiving low n-6 to n-3 ratios vol.101, pp.5, 2016, https://doi.org/10.1111/jpn.12502
  3. Effect of Chromium Nanoparticles on Physiological Stress Induced by Exogenous Dexamethasone in Japanese Quails pp.1559-0720, 2018, https://doi.org/10.1007/s12011-017-1192-y
  4. Incubation Temperatures Affect Expression of Nutrient Transporter Genes in Japanese Quail vol.11, pp.9, 2010, https://doi.org/10.3923/ajava.2016.538.547
  5. Effect of dietary supplementation with Rhizopus oryzae or Chrysonilia crassa on growth performance, blood profile, intestinal microbial population, and carcass traits in broilers exposed to heat stres vol.60, pp.3, 2010, https://doi.org/10.5194/aab-60-347-2017
  6. Effects of antibiotic growth promoter and dietary protease on growth performance, apparent ileal digestibility, intestinal morphology, meat quality, and intestinal gene expression in broiler chickens: vol.98, pp.9, 2010, https://doi.org/10.1093/jas/skaa254
  7. Telomere Length and Regulatory Genes as Novel Stress Biomarkers and Their Diversities in Broiler Chickens (Gallus gallus domesticus) Subjected to Corticosterone Feeding vol.11, pp.10, 2010, https://doi.org/10.3390/ani11102759
  8. Telomere Length, Apoptotic, and Inflammatory Genes: Novel Biomarkers of Gastrointestinal Tract Pathology and Meat Quality Traits in Chickens under Chronic Stress (Gallus gallus domesticus) vol.11, pp.11, 2010, https://doi.org/10.3390/ani11113276