Effects of Supplementation with a Schizandrin C Derivative DDB-mixed Preparation (DWP-04) on Antioxidant Activity in Cisplatin-induced Nephrotoxicity in Rats

Schizandrin C 유도체 DDB 혼합물 DWP-04가 Cisplatin의 신독성 경감기전에 미치는 영향

Choi, Jong-Won;Kang, Hye-Ok;Jung, Yeon-Soon;Rim, Hark;Hur, Bang
최종원;강혜옥;정연순;임학;허방

  • Published : 20100000

Abstract

Purpose : This study investigated the effect of reducing cisplatin induced nephrotoxicity with DWP-04 that is the compound of Schizandrin C derivative biphenyldimethyl dicarboxylate (DDB), glutathione and selenium. For the purpose of observation is that how DWP-04 has influence on mechanism of reducing cisplatin induced nephrotoxicity with renal function test, free radical formation and detoxification enzyme system in renal tissue. Methods : Five groups of rats were dosed with vehicle, cisplatin (2 mg/kg i.p.), cisplatin+DWP-04 (100, 200 mg/kg po), or cisplatin+sodium thiosulfate (200 mg/kg i.p.) daily for 4 weeks. Results : Serum creatinine, lactate dehydrogenase and activity of hydroxy radical increased in the cisplatin group and suppressed in the cisplatin+DWP-04 group compared to the cisplatin group. The renal tissue concentration of lipid peroxidase and lipofuscin were increased in the cisplatin group compared to the other groups. The activity of aminopyrine N-demethylase, aniline hydroxylase, aldehyde oxidase and xanthine oxidase, of which free radical formation system in kidney was also decreased in the cisplatin+DWP-04 group compared to the cisplatin and cisplatin+sodium thiosulfate group. The activity of detoxification system of free radical, such as glutathione S-transferase, superoxide dismutase, catalase and glutathione peroxidase were markedly increased in the cisplatin+DWP-04 group than the cisplatin and the cisplatin+sodium thiosulfate group (p<0.05). Conclusion : It can be concluded that the mechanism of decreasing cisplatin-induced nephrotoxicity by DWP-04 is that the decreasing of the amount of lipid peroxide and lipofuscin in the renal tissue by increasing activity of the antioxidant defense system and the decreasing of reactive oxygen species by increasing detoxification enzyme activity.

목 적 : Cisplatin 신독성 모델에서 오미자에서 추출된 Sch-zandrin C의 합성물질인 DDB, gluglutathion과 selenium의 복합물질인 DWP-04을 투여하여 신독성 경감효과를 알아보았다. 이 과정에서 신 조직 중 과산화지질 및 활성산소에 관여하는 효소계에 미치는 효과를 조직학적 검사와 병행하여 비교 검토하였다. 방 법 : 백서는 정상 대조군 (n=5), Cisplatin 단독 투여 대조군 (n=10), DWP-04 100 mg/kg 투여군 (n=10), DWP-04 100 mg/kg 투여군 (n=10)과 sodium sulfate 200 mg/kg 투여군 (n=10)으로 나누어 4주간 약물치료 한 후 검체를 얻었다. 결 과 : 혈청 크레아티닌, 혈중 creatinine, lactate dehy-drogenase 및 HR의 활성은 cisplatin 단독투여로 증가되었으며 DWP-04의 동시투여로 억제되었고 혈중 SOD의 활성은 cisplatin 단독투여로 억제되던 것이 DWP-04의 동시투여로 증가되었다. 신조직 중 지질 과산화 및 lipofuscin함량은 cis-platin의 투여로 증가되던 것이 DWP-04의 동시투여로 억제 되었다. 활성산소의 생성계인 AD, AO, AH, XO의 활성은 cisplatin의 단독투여로 증가되던 것이 DWP-04의 동시투여로 억제되었다. 활성산소의 해독계인 GST, SOD, CAT, GPx의 활성은 cisplatin의 단독 투여로 억제되던 것이 DWP-04의 투여로 증가되었다. 결 론 : Cisplatin으로 인해 발생한 신장독성 모델에서 DDB, glutathione과 selenium으로 구성된 DWP-04는 신장독성을 경감시키는 결과를 보였다. 이러한 효과는 LPO 및 lipofus-cin의 함량을 경감시키고 활성산소의 생성계 효소의 감소 및 해독계 효소의 증가를 통해 나타난 것으로 사료된다.

Keywords

References

  1. Arany I, Safirstein RL: Cisplatin nephrotoxicity. Semin Nephrol 23:460-464, 2003 https://doi.org/10.1016/S0270-9295(03)00089-5
  2. Lieberthal W, Triaca V, Levine J: Mechanisms of death induced by cisplatin in proximal tubular epithelial cells: apoptosis vs. necrosis. Am J Physiol 270:F700-F708, 1996
  3. Pabla N, Dong Z: Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73:994-1007, 2008 https://doi.org/10.1038/sj.ki.5002786
  4. Jiang M, Dong Z: Regulation and pathological role of p53 in cisplatin nephrotoxicity. J Pharmacol Exp Ther 327:300-307, 2008 https://doi.org/10.1124/jpet.108.139162
  5. Kuhad A, Tirkey N, Pilkhwal S, Chopra K: Renoprotective effect of Spirulina fusiformis on cisplatininduced oxidative stress and renal dysfunction in rats. Ren Fail 28:247-254, 2006 https://doi.org/10.1080/08860220600580399
  6. Chirino YI, Pedraza-Chaverri J: Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol 61:223-242, 2009 https://doi.org/10.1016/j.etp.2008.09.003
  7. Abdel-Salam OM, Sleem AA, Morsy FA: Effects of biphenyldimethyl-dicarboxylate administration alone or combined with silymarin in the CCL4 model of liver fibrosis in rats. Scientific World Journal 24: 1242-1255, 2007
  8. Li XY: Bioactivity of neolignans from fructus Schizandrae. Mem Inst Oswaldo Cruz 86(Suppl 2):31-37, 1991
  9. Franco R, Schoneveld OJ, Pappa A, Panayiotidis MI: The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem 113:234-258, 2007
  10. N$\grave{e}$ve J: New approaches to assess selenium status and requirement. Nutr Rev 58:363-369, 2000 https://doi.org/10.1111/j.1753-4887.2000.tb01837.x
  11. Halliwell B, Grootveld M, Gutteridge JM: Methods for the measurement of hydroxyl radicals in biomedical systems: deoxyribose degradation and aromatic hydroxylation. Methods Biochem Anal 33:59-90, 1988 https://doi.org/10.1002/9780470110546.ch2
  12. Oyanagui Y: Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Anal Biochem 142:290-296, 1984 https://doi.org/10.1016/0003-2697(84)90467-6
  13. Ohkawa H, Ohishi N, Yagi K: Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351-358, 1979 https://doi.org/10.1016/0003-2697(79)90738-3
  14. Chio KS, Reiss U, Fletcher B, Tappel AL: Peroxidation of subcellular organelles: formation of lipofuscin like fluorescent pigments. Science 166:1535-1536, 1969 https://doi.org/10.1126/science.166.3912.1535
  15. Stirpe F, Della Corte E: The regulation of rat liver xanthine oxidase. Conversion in vitro of the enzyme activity from dehydrogenase(type D) to oxidase (type O). J Biol Chem 244:3855-3863, 1969
  16. Rajagopalan KV, Fridovich I, Handler P: Hepatic aldehyde oxidase. I. Purification and properties. J Biol Chem 237:922-928, 1962
  17. Nash T: The colorimetric estimation of formaldehyde by means of the hantzsch reaction. Biochem J 55: 416-421, 1953
  18. Bidlack WR, Lowery GL: Multiple drug metabolism: p-Nitroanisole reversal off acetone enhanced aniline hydroxylation. Biochem Pharmacol 31:311-317, 1982 https://doi.org/10.1016/0006-2952(82)90176-9
  19. Marklund S, Marklund G: Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469-474, 1974 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  20. Aebi, HE: Catalase: Methods of enzymetic analysis. ed, Vergmeyer, M.U., New York, Academic Press, 1974
  21. Paglia DE, Valentine WN: Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158-169, 1967
  22. Habig WH, Pabst MJ, Jakoby WB: Glutathione Stransferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130-7139, 1974
  23. Ellman GL: Tissue sulfhydryl groups. Arch Biochem Biophys 82:70-77, 1959 https://doi.org/10.1016/0003-9861(59)90090-6
  24. Richman PG, Meister A: Regulation of gammaglutamyl- cysteine synthetase by nonallosteric feedback inhibition by glutathione. J Biol Chem 250: 1422-1426, 1975
  25. Mize CE, Langdon RG: Hepatic glutathione reductase. I. Purification and general kinetic properties. J Biol Chem 237:1589-1595, 1962
  26. Elferink F, van der Vijgh WJ, Klein I, Pinedo HM: Interaction of cisplatin and carboplatin with sodium thiosulfate: reaction rates and protein binding. Clin Chem 32:641-645, 1986
  27. Ozdemir E, Dokucu AI, Uzunlar AK, Ece A, Yaldiz M, Oztürk H: Experimental study on effects of deferoxamine mesilate in ameliorating cisplatin-induced nephrotoxicity. Int Urol Nephrol 33:127-131, 2002 https://doi.org/10.1023/A:1014442027991
  28. Ramesh G, Reeves WB: Salicylate reduces cisplatin nephrotoxicity by inhibition of tumor necrosis factoralpha. Kidney Int 65:490-499, 2004 https://doi.org/10.1111/j.1523-1755.2004.00413.x
  29. Freeman BA, Crapo JD: Biology of disease: Free radicals and tissue injury. Lab Invest 47:412-426, 1982
  30. Masuda H, Tanaka T, Takahama U: Cisplatin generates superoxide anion by interaction with DNA in a cell-free system. Biochem Biophys Res Commun 203:1175-1180, 1994 https://doi.org/10.1006/bbrc.1994.2306
  31. Terman A, Brunk UT: Lipofuscin. Int J Biochem Cell Biol 36:1400-1404, 2004 https://doi.org/10.1016/j.biocel.2003.08.009
  32. Plaxe S, Freddo J, Kim S, Kirmani S, McClay E, Christen R, Braly P, Howell S: Phase I trial of cisplatin in combination with glutathione. Gynecol Oncol 55:82-86, 1994 https://doi.org/10.1006/gyno.1994.1252
  33. Naziroglu M, Karao lu A, ğ Aksoy AO: Selenium and high dose vitamin E administration protects cisplatininduced oxidative damage to renal, liver and lens tissues in rats. Toxicology 195:221-230, 2004 https://doi.org/10.1016/j.tox.2003.10.012
  34. Cetin R, Devrim E, Kili$\c{c}$o$\check{g}$lu B, Avci A, Candir O, Durak I: Cisplatin impairs antioxidant system and causes oxidation in rat kidney tissues: possible protective roles of natural antioxidant foods. J Appl Toxicol 26:42-46, 2006 https://doi.org/10.1002/jat.1103
  35. Badary OA, Abdel-Maksoud S, Ahmed WA, Owieda GH: Naringenin attenuates cisplatin nephrotoxicity in rats. Life Sci 76:2125-2135, 2005 https://doi.org/10.1016/j.lfs.2004.11.005
  36. Mohan IK, Khan M, Shobha JC, Naidu MU, Prayag A, Kuppusamy P, Kutala VK: Protection against cisplatin-induced nephrotoxicity by Spirulina in rats. Cancer Chemother Pharmacol 58:802-808, 2006 https://doi.org/10.1007/s00280-006-0231-8
  37. Past MR, Cook DE: Effect of diabetes on rat liver cytochrome P-450. Evidence for a unique diabetesdependent rat liver cytochrome P-450. Biochem Pharmacol 31:3329-3334, 1982 https://doi.org/10.1016/0006-2952(82)90569-X
  38. Favreau LV, Schenkman JB: Decrease in the levels of a constitutive cytochrome P-450 (RLM5) in hepatic microsomes of diabetic rats. Biochem Biophys Res Commun 142:623-630, 1987 https://doi.org/10.1016/0006-291X(87)91460-4
  39. Ji S, Lemasters JJ, Christenson V, Thurman RG: Periportal and pericentral pyridine nucleotide fluorescence from the surface of the perfused liver: evaluation of the hypothesis that chronic treatment with ethanol produces pericentral hypoxia. Proc Natl Acad Sci USA 79:5415-5419, 1982 https://doi.org/10.1073/pnas.79.17.5415
  40. McCord JM: Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312:159-163, 1985 https://doi.org/10.1056/NEJM198501173120305
  41. Demple B, Harrison L: Repair of oxidative damage to DNA: Enzymology and biology. Annu Rev Biochem 63:915-948, 1994 https://doi.org/10.1146/annurev.bi.63.070194.004411
  42. Fang J, Nakamura H, Iyer AK: Tumor-targeted induction of oxystress for cancer therapy. J Drug Target 15:475-486, 2007 https://doi.org/10.1080/10611860701498286
  43. Levi J, Jacobs C, Kalman SM, McTigue M, Weiner MW: Mechanism of cis-platinum nephrotoxicity: I. Effects of sulfhydryl groups in rat kidneys. J Pharmacol Exp Ther 213:545-550, 1980
  44. Torres AM, Rodriguez JV, Elías MM: Vulnerability of the thick ascending limb to glutathione depletion in rat kidney: effects of diuretics and indomethacin. J Pharmacol Exp Ther 250:247-253, 1989