DOI QR코드

DOI QR Code

Role of AMPK in the Regulation of Cellular Energy Metabolism

생체 에너지 대사 조절에서 AMPK의 역할

Ha, Joo-Hun;Lee, Soo-Ho
하주헌;이수호

  • Published : 20100000

Abstract

Keywords

References

  1. Wing RR, Goldstein MG, Acton KJ, Birch LL, Jakicic JM, Sallis JF Jr, Smith-West D, Jeffery RW, Surwit RS: Behavioral science research in diabetes: lifestyle changes related to obesity, eating behavior, and physical activity. Diabetes Care 24:117-123, 2001 https://doi.org/10.2337/diacare.24.1.117
  2. Saltiel AR, Kahn CR: Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799-806, 2001 https://doi.org/10.1038/414799a
  3. Towler MC, Hardie DG: AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res 100:328-341, 2007 https://doi.org/10.1161/01.RES.0000256090.42690.05
  4. Hardie DG: AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774-785, 2007 https://doi.org/10.1038/nrm2249
  5. Zhang BB, Zhou G, Li C: AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9:407-416, 2009 https://doi.org/10.1016/j.cmet.2009.03.012
  6. Kahn BB, Alquier T, Carling D, Hardie DG: AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1:15-25, 2005 https://doi.org/10.1016/j.cmet.2004.12.003
  7. Carling D: The AMP-activated protein kinase cascade--a unifying system for energy control. Trends Biochem Sci 29:18-24, 2004 https://doi.org/10.1016/j.tibs.2003.11.005
  8. Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG: Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271:27879-27887, 1996 https://doi.org/10.1074/jbc.271.44.27879
  9. Stein SC, Woods A, Jones NA, Davison MD, Carling D: The regulation of AMP-activated protein kinase by phosphorylation. Biochem J 345:437-443, 2000 https://doi.org/10.1042/0264-6021:3450437
  10. Crute BE, Seefeld K, Gamble J, Kemp BE, Witters LA: Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase. J Biol Chem 273:35347-35354, 1998 https://doi.org/10.1074/jbc.273.52.35347
  11. Woods A, Cheung PC, Smith FC, Davison MD, Scott J, Beri RK, Carling D: Characterization of AMP-activated protein kinase beta and gamma subunits. Assembly of the heterotrimeric complex in vitro. J Biol Chem 271:10282-10290, 1996 https://doi.org/10.1074/jbc.271.17.10282
  12. Hudson ER, Pan DA, James J, Lucocq JM, Hawley SA, Green KA, Baba O, Terashima T, Hardie DG: A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr Biol 13:861-866, 2003 https://doi.org/10.1016/S0960-9822(03)00249-5
  13. Kemp BE: Bateman domains and adenosine derivatives form a binding contract. J Clin Invest 113:182-184, 2004 https://doi.org/10.1172/JCI200420846
  14. Suter M, Riek U, Tuerk R, Schlattner U, Wallimann T, Neumann D: Dissecting the role of 5′-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. J Biol Chem 281:32207-32216, 2006 https://doi.org/10.1074/jbc.M606357200
  15. Hardie DG: The AMP-activated protein kinase pathway--new players upstream and downstream. J Cell Sci 117:5479-5487, 2004 https://doi.org/10.1242/jcs.01540
  16. Hancock CR, Janssen E, Terjung RL: Contraction-mediated phosphorylation of AMPK is lower in skeletal muscle of adenylate kinase-deficient mice. J Appl Physiol 100:406-413, 2006 https://doi.org/10.1152/japplphysiol.00885.2005
  17. Riek U, Scholz R, Konarev P, Rufer A, Suter M, Nazabal A, Ringler P, Chami M, Müller SA, Neumann D, Forstner M, Hennig M, Zenobi R, Engel A, Svergun D, Schlattner U, Wallimann T: Structural properties of AMP-activated protein kinase: dimerization, molecular shape, and changes upon ligand binding. J Biol Chem 283:18331-18343, 2008 https://doi.org/10.1074/jbc.M708379200
  18. Sanders MJ, Grondin PO, Hegarty BD, Snowden MA, Carling D: Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem J 403:139-148, 2007 https://doi.org/10.1042/BJ20061520
  19. Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Mäkelä TP, Alessi DR, Hardie DG: Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2:28, 2003 https://doi.org/10.1186/1475-4924-2-28
  20. Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, Schlattner U, Wallimann T, Carlson M, Carling D: LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13:2004-2008, 2003 https://doi.org/10.1016/j.cub.2003.10.031
  21. Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG: Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2:9-19, 2005 https://doi.org/10.1016/j.cmet.2005.05.009
  22. Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA: The Ca2+/calmodulindependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280:29060-29066, 2005 https://doi.org/10.1074/jbc.M503824200
  23. Lan F, Cacicedo JM, Ruderman N, Ido Y: SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem 283:27628-27635, 2008 https://doi.org/10.1074/jbc.M805711200
  24. Bergeron R, Previs SF, Cline GW, Perret P, Russell RR 3rd, Young LH, Shulman GI: Effect of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats. Diabetes 50:1076-1082, 2001 https://doi.org/10.2337/diabetes.50.5.1076
  25. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE: Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167-1174, 2001
  26. Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M, Cantley LC: The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310:1642-1646, 2005 https://doi.org/10.1126/science.1120781
  27. Foretz M, Ancellin N, Andreelli F, Saintillan Y, Grondin P, Kahn A, Thorens B, Vaulont S, Viollet B: Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 54:1331-1339, 2005 https://doi.org/10.2337/diabetes.54.5.1331
  28. Lochhead PA, Salt IP, Walker KS, Hardie DG, Sutherland C: 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes 49:896-903, 2000 https://doi.org/10.2337/diabetes.49.6.896
  29. Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S, Hedrick S, Xu W, Boussouar F, Brindle P, Takemori H, Montminy M: The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437:1109-1111, 2005 https://doi.org/10.1038/nature03967
  30. Banerjee RR, Rangwala SM, Shapiro JS, Rich AS, Rhoades B, Qi Y, Wang J, Rajala MW, Pocai A, Scherer PE, Steppan CM, Ahima RS, Obici S, Rossetti L, Lazar MA: Regulation of fasted blood glucose by resistin. Science 303:1195-1198, 2004 https://doi.org/10.1126/science.1092341
  31. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T: Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288-1295, 2002 https://doi.org/10.1038/nm788
  32. Koistinen HA, Galuska D, Chibalin AV, Yang J, Zierath JR, Holman GD, Wallberg-Henriksson H: 5-amino-imidazole carboxamide riboside increases glucose transport and cell-surface GLUT4 content in skeletal muscle from subjects with type 2 diabetes. Diabetes 52:1066-1072, 2003 https://doi.org/10.2337/diabetes.52.5.1066
  33. Sakamoto K, Holman GD: Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am J Physiol Endocrinol Metab 295:E29-E37, 2008 https://doi.org/10.1152/ajpendo.90331.2008
  34. Treebak JT, Birk JB, Rose AJ, Kiens B, Richter EA, Wojtaszewski JF: AS160 phosphorylation is associated with activation of alpha2beta2gamma1- but not alpha2beta2gamma3-AMPK trimeric complex in skeletal muscle during exercise in humans. Am J Physiol Endocrinol Metab 292:E715-E722, 2007 https://doi.org/10.1152/ajpendo.00380.2006
  35. Petersen KF, Oral EA, Dufour S, Befroy D, Ariyan C, Yu C, Cline GW, DePaoli AM, Taylor SI, Gorden P, Shulman GI: Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest 109:1345-1350, 2002 https://doi.org/10.1172/JCI0215001
  36. Kamohara S, Burcelin R, Halaas JL, Friedman JM, Charron MJ: Acute stimulation of glucose metabolism in mice by leptin treatment. Nature 389:374-377, 1997 https://doi.org/10.1038/38717
  37. Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Müller C, Carling D, Kahn BB: Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339-343, 2002 https://doi.org/10.1038/415339a
  38. Bruce CR, Mertz VA, Heigenhauser GJ, Dyck DJ: The stimulatory effect of globular adiponectin on insulin-stimulated glucose uptake and fatty acid oxidation is impaired in skeletal muscle from obese subjects. Diabetes 54:3154-3160, 2005 https://doi.org/10.2337/diabetes.54.11.3154
  39. Woods A, Azzout-Marniche D, Foretz M, Stein SC, Lemarchand P, Ferŕe P, Foufelle F, Carling D: Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol Cell Biol 20:6704-6711, 2000 https://doi.org/10.1128/MCB.20.18.6704-6711.2000
  40. Foretz M, Carling D, Guichard C, Ferŕe P, Foufelle F: AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes. J Biol Chem 273:14767-14771, 1998 https://doi.org/10.1074/jbc.273.24.14767
  41. Assifi MM, Suchankova G, Constant S, Prentki M, Saha AK, Ruderman NB: AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats. Am J Physiol Endocrinol Metab 289:E794-E800, 2005 https://doi.org/10.1152/ajpendo.00144.2005
  42. Andreelli F, Foretz M, Knauf C, Cani PD, Perrin C, Iglesias MA, Pillot B, Bado A, Tronche F, Mithieux G, Vaulont S, Burcelin R, Viollet B: Liver adenosine monophosphate-activated kinase-alpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin. Endocrinology 147:2432-2441, 2006 https://doi.org/10.1210/en.2005-0898
  43. Merrill GF, Kurth EJ, Hardie DG, Winder WW: AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol 273:E1107-E1112, 1997
  44. J$\ddot{a}$ger S, Handschin C, St-Pierre J, Spiegelman BM: AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 104:12017-12022, 2007 https://doi.org/10.1073/pnas.0705070104
  45. Cant$\acute{o}$ C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J: AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056-1060, 2009 https://doi.org/10.1038/nature07813
  46. Kelley DE, He J, Menshikova EV, Ritov VB: Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944-2950, 2002 https://doi.org/10.2337/diabetes.51.10.2944
  47. Kahn SE: The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia 46:3-19, 2003 https://doi.org/10.1007/s00125-003-1190-9
  48. Prentki M, Joly E, El-Assaad W, Roduit R: Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity: role in beta-cell adaptation and failure in the etiology of diabetes. Diabetes 51:S405-S413, 2002 https://doi.org/10.2337/diabetes.51.2007.S405
  49. Lupi R, Del Guerra S, Fierabracci V, Marselli L, Novelli M, Patanè G, Boggi U, Mosca F, Piro S, Del Prato S, Marchetti P: Lipotoxicity in human pancreatic islets and the protective effect of metformin. Diabetes 51:S134-S137, 2002 https://doi.org/10.2337/diabetes.51.2007.S134
  50. Higa M, Zhou YT, Ravazzola M, Baetens D, Orci L, Unger RH: Troglitazone prevents mitochondrial alterations, beta cell destruction, and diabetes in obese prediabetic rats. Proc Natl Acad Sci U S A 96:11513-11518, 1999 https://doi.org/10.1073/pnas.96.20.11513
  51. Kefas BA, Heimberg H, Vaulont S, Meisse D, Hue L, Pipeleers D, Van de Casteele M: AICA-riboside induces apoptosis of pancreatic beta cells through stimulation of AMP-activated protein kinase. Diabetologia 46:250-254, 2003 https://doi.org/10.1007/s00125-002-1030-3
  52. Kim WH, Lee JW, Suh YH, Lee HJ, Lee SH, Oh YK, Gao B, Jung MH: AICAR potentiates ROS production induced by chronic high glucose: roles of AMPK in pancreatic beta-cell apoptosis. Cell Signal 19:791-805, 2007 https://doi.org/10.1016/j.cellsig.2006.10.004
  53. Tsuboi T, da Silva Xavier G, Leclerc I, Rutter GA: 5′-AMP-activated protein kinase controls insulin-containing secretory vesicle dynamics. J Biol Chem 278:52042-52051, 2003 https://doi.org/10.1074/jbc.M307800200
  54. da Silva Xavier G, Leclerc I, Varadi A, Tsuboi T, Moule SK, Rutter GA: Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression. Biochem J 371:761-774, 2003 https://doi.org/10.1042/BJ20021812
  55. Leclerc I, Woltersdorf WW, da Silva Xavier G, Rowe RL, Cross SE, Korbutt GS, Rajotte RV, Smith R, Rutter GA: Metformin, but not leptin, regulates AMP-activated protein kinase in pancreatic islets: impact on glucose-stimulated insulin secretion. Am J Physiol Endocrinol Metab 286:E1023-E1031, 2004 https://doi.org/10.1152/ajpendo.00532.2003
  56. Wang X, Zhou L, Shao L, Qian L, Fu X, Li G, Luo T, Gu Y, Li F, Li J, Zheng S, Luo M: Troglitazone acutely activates AMP-activated protein kinase and inhibits insulin secretion from beta cells. Life Sci 81:160-165, 2007 https://doi.org/10.1016/j.lfs.2007.04.034
  57. Zhou L, Wang X, Shao L, Yang Y, Shang W, Yuan G, Jiang B, Li F, Tang J, Jing H, Chen M: Berberine acutely inhibits insulin secretion from beta-cells through 3′,5′-cyclic adenosine 5′-monophosphate signaling pathway. Endocrinology 149:4510-4518, 2008 https://doi.org/10.1210/en.2007-1752
  58. Viollet B, Lantier L, Devin-Leclerc J, Hebrard S, Amouyal C, Mounier R, Foretz M, Andreelli F: Targeting the AMPK pathway for the treatment of Type 2 diabetes. Front Biosci 14:3380-3400, 2009

Cited by

  1. AMPK 활성화를 통한 목통의 항산화 효과 vol.29, pp.1, 2015, https://doi.org/10.15188/kjopp.2015.02.29.1.18
  2. Genome-wide identification and characterization of the AMPK genes and their distinct expression patterns in response to air exposure in the Manila clam (Ruditapes philippinarum) vol.42, pp.1, 2020, https://doi.org/10.1007/s13258-019-00872-0