Effects of Supplementary LED Lighting on Growth and Biochemical Parameters in Dieffenbachia amoena'Camella' and Ficus elastica 'Melany'

LED광원을 이용한 보광 처리가 Dieffenbachia amoena 'Melany'와 Ficus elastica 'Camella'의 생장과 생화학적 파라미터에 미치는 영향

Heo, Jeong-Wook;Lee, Yong-Beum;Kim, Dong-Eok;Chang, Yu-Seob;Chun, Chang-Hoo
허정욱;이용범;김동억;장유섭;전창후

  • Published : 20100200

Abstract

To verify the possibility of LEDs as supplementary lighting sources for greenhouse production of foliage plants, growth and development, sugar content, starch content, and chlorophyll and carotenoid contents of potted Dieffenbachia amoena 'Camella' and Ficus elastica 'Melany' plants were investigated. The plant response varied by monochromatic or mixture of blue and red LEDs and by species. In both species, monochromatic red and supplementation with blue plus red LEDs increased plant height and number of unfolded leaves, while the blue plus red LED treatment promoted the uptake and utilization of nitrogen in Ficus plant. Supplementation with any LEDs did not cause any changes in contents of chlorophyll a and b and total carotenoids. Dry weight and starch content of Dieffenbachia and Ficus and the number of branches in Dieffenbachia increased by supplementation with mixture of blue and red LEDs without any negative effects compared with the control treatment. Results indicate that supplementation with mixture of blue and red LEDs, compared to other light treatments, is beneficial for promotion of growth and development without any negative effects on biochemical characteristics in Dieffenbachia and Ficus.

본 실험에서는 발광 다이오드(LED)가 관엽 식물 온실 재배시 보광 광원으로서 적합한지를 검증하기 위하여 청색 및 적색 단일 광질 및 청색과 적색의 혼합 광질 보광이 디펜바키아 '카멜라'와 피커스 '멜라니' 분화 식물의 생장 및 발육, 체내 당, 전분, 엽록체 및 카로티노이드 함량에 미치는 영향을 검토하였다. 식물 반응은 단일 광질 및 혼합 광질 등 처리 파장역과 조사 식물에 따라 달랐다. 두 조사 식물 모두에서 단일의 적색광과 청/적 혼합광 처리는 초장과 전개엽수를 증가시켰으며, 청/적 혼합광 처리는 피커스 식물체내 질소 흡수 및 이용을 증대시켰다. 단일의 적색 및 청+적 혼합광 처리는 디펜바키아의 카로티노이드 함량을 증가시켰으나 인도고무나무의 보광광질에 따른 영향이 나타나지 않았다. 인도고무나무의 건물중 및 체내 전분 함량 및 디펜바키아의 분지수는 청/적 혼합 광질 보광 처리구에서 증대되었다. 본 연구를 통하여 LED 광원은 관엽식물의 보광용 광원으로 적합하며 특히 청/적 혼합광질에 의한 보광처리는 식물체내 생장 및 성분변화 등에 부정적인 영향을 미치지 않으면서 인도고무나무와 디펜바키아의 생육을 촉진시킬 수 있는 광질임을 알 수 있었다.

Keywords

References

  1. Aphalo, P.J. and T. Lehto. 1997. Effects of light quality on growth and N accumulation in birch seedlings. Tree Physiol. 17:125-132 https://doi.org/10.1093/treephys/17.2.125
  2. Barro, F., D.L. Haba, J.M. Maldonado, and A.G. Fontes. 1989. Effects of light quality on growth, contents of carbohydrates, proteins and pigments, and nitrate reductase activity in soybean plants. Plant Physiol. 134:586-591 https://doi.org/10.1104/pp.103.031765
  3. Blain, J., A. Gosselin, and M.J. Trudel. 1987. Influence of HPS supplementary lighting on growth and yield of greenhouse cucumbers. HortSci. 22:36-38
  4. Blom, T.J. and F.J. Ingratta. 1984. The effects of high pressure sodium lighting on the production of tomatoes, cucumbers and roses. Acta Hort. 148:905-914
  5. Blum, D.E., T.M. Elsenga, P.A. Linnemeyer, and E. Volkenburgh. 1992. Stimulation of growth and ion uptake in bean leaves by red and blue light. Plant Physiol. 100:1968-1975 https://doi.org/10.1104/pp.100.4.1968
  6. Bula, R.J., R.C. Morrow, T.W. Tibbits, D.J. Barta, R.W. Ingnatius, and T. Martin. 1991. Light-emitting diodes as a radiation source for plants. HortSci. 26:203-205
  7. Chadjaa, H., L.P. Venzina, M. Dorais, and A. Gosselin. 2001. Effects of lighting on the growth, quality and primary nitrogen assimilation of greenhouse lettuce (Lactuca sativa L.). Acta Hort. 559:325-332
  8. Challa, H. and A.H.C.M. Schapendonk. 1984. Quantification of effects of light reduction in greenhouse on yield. Acta Hort. 148:501-510
  9. Chaplin, M.F. 1986. Monosaccharides, p. 1-36. In: M.F. Chaplin and J.F. Kennedy (eds.). Carbohydrate analysis, A practical approach. IRL Press, Oxford
  10. Demers, D.A. and A. Gosselin. 1999. Supplemental lighting of greenhouse vegetables: Limitations and problems related to long photoperiods. Acta Hort. 481:469-474
  11. Demers, D.A., M. Dorais, C.H. Wien, and A. Gosselin. 1998. Effects of supplemental light duration on greenhouse tomato (Lycopersicon esculentum Mill.) plant and fruit yields. Sci. Hort. 74:295-306 https://doi.org/10.1016/S0304-4238(98)00097-1
  12. Deregibus, V.A., R.A. Sanchez, J.J. Casal, and M.J. Trlica. 1985. Tillering responses to enrichment of red light beneath the canopy in a humid natural grassland. J. Applied Eco. 22:199-206 https://doi.org/10.2307/2403337
  13. Deutch, B. and O. Rasmussen. 1974. Growth chamber illumination and photomorphogenetic efficacy. I. Physiological action of infrared radiation beyond 750 nm. Physiol. Planta. 30:64-71 https://doi.org/10.1111/j.1399-3054.1974.tb04993.x
  14. Dorais, M., A. Gosselin, and M.J. Trudel. 1991. Annual greenhouse tomato production under a sequential intercropping system using supplemental light. Sci. Hort. 45:225-234 https://doi.org/10.1016/0304-4238(91)90067-9
  15. Downs, R.J. and H. Hellmers. 1975. Environmental and the experimental control of plant growth. Academic Press, Inc., NJ, USA. p. 145
  16. Fernandez, J.A., P.F. Martinez, and N. Castilla. 2001. Effects of lighting on the growth, quality and primary nitrogen assimilation of greenhouse lettuce (Lactuca sativa L.). Acta Hort. 559:325-332
  17. Hangarter, R.P. 1997. Gravity, light and plant form. Plant Cell Environ. 20:796-800 https://doi.org/10.1046/j.1365-3040.1997.d01-124.x
  18. Hao, X. and P. Papadopoulos. 1999. Effects of supplemental lighting and cover materials on growth, photosynthesis, biomass partitioning, early yield and quality of greenhouse cucumber. Sci. Hort. 80:1-18 https://doi.org/10.1016/S0304-4238(98)00217-9
  19. Hendriks, J. 1992. Supplementary lighting for greenhouses. Acta Hort. 312:65-76
  20. Heo, J.W., C.W. Lee, D. Chakrabarty, and K.Y. Paek. 2002. Growth responses of marigold and salvia bedding plants as affected by monochromatic or mixture radiation provided by a Light-Emitting Diode (LED). Plant Growth Regulation 38:225-230 https://doi.org/10.1023/A:1021523832488
  21. Heo, J.W., C.W. Lee, and K.Y. Paek. 2006a. Influence of mixed LED radiation on the growth of annual plants. J. Plant Biol. 49:286-290 https://doi.org/10.1007/BF03031157
  22. Heo, J.W., K.S. Shin, S.K. Kim, and K.Y. Paek. 2006b. Light quality affects in vitro growth of grape 'Teleki 5BB'. J. Plant Biol. 49:276-280 https://doi.org/10.1007/BF03031155
  23. Heo, J.W., Y.B. Lee, D.B. Lee, and C. Chun. 2009. Light quality affects growth, net photosynthetic rate, and ethylene production of ageratum, African marigold, and salvia seedlings. Kor. J. Hort. Sci. Technol. 27:187-193
  24. Mannheim, B. 1989. Maltose/sucrose/D-glucose/D-fructose, p. 98-100. In: B. Mannheim (ed.). Methods of biochemical analysis and food analysis, Boehringer Mannheim GmbH. Mannheim, Germany
  25. Masson, J., N. Trembley, and A. Gosselin. 1991. Nitrogen fertilization and HPS supplementary lighting influence vegetable transplant production I. Transplant growth. J. Amer. Soc. Hort. Sci. 116:594-598
  26. McAvoy, R.J. and H.W. Janes. 1984. The use of high pressure sodium lights in greenhouse tomato crop production. Acta Hort. 148:877-888
  27. Miranda, J.H. and R.R. Williams. 2004. Light quality and CO2 induced changes in saccharide content of strawberry (Fragaria x ananassa) 'Red Joy' plants in vitro. 5th Asian Crop Sci. Conference. Abst. p. 632
  28. Saebo, A., T. Krekling, and M. Appelgren. 1995. Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell, Tiss. & Org. Cult. 41:177-185 https://doi.org/10.1007/BF00051588
  29. Sanchez, R.A. 1971. Phytochrome involvement in the control of leaf shape of Taraxacum officinale L. Cellul. Molecul. Life Sci. 27:1234-1237 https://doi.org/10.1007/BF02286950
  30. Schuerger, A.C., C.S. Brown, and E.C. Stryjewski. 1997. Anatomical features of pepper plants (Capsicum annuum L.) grown under red light emitting diodes supplemented with blue or far-red light. Annl. Bot. 79:273-282 https://doi.org/10.1006/anbo.1996.0341
  31. Tanaka, M., T. Takamura, H. Watanabe, M. Endo, T. Yanagi, and K. Okamoto. 1998. In vitro growth of Cymbidium plantlets cultured under super bright red and blue light-emitting diodes (LEDs). J. Hort. Sci. Biotech. 73:39-44
  32. Taylor, J.L., J.N. Joiner, and R.D. Dickey. 1959. Nitrogen and light intensity requirements of some commercially grown foliage plants. Florida State Hort. Soc. 373-375
  33. Treder J. 2003. Effects of supplementary lighting on flowering, plant quality and nutrient requirements of lily 'Laura Lee' during winter forcing. Sci. Hort. 98:37-47 https://doi.org/10.1016/S0304-4238(02)00220-0
  34. Wellburn, A.R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolutions. Plant Physiol. 144:307-313 https://doi.org/10.1016/S0176-1617(11)81192-2
  35. Quail, P.H., E.A. Gallagher, and A.R. Wellburn. 1976. Membraneassociated phytochrome: non-coincidence with plastid membrane marker profiles on sucrose gradients. Photochem. Photobiol. 24:495-498 https://doi.org/10.1111/j.1751-1097.1976.tb06862.x