Highly Efficient Shoot Regeneration from Cotyledonary Nodes of Vegetable Soybean

풋콩 자엽절을 이용한 효율적 신초 재분화

Liu, Qian-Qian;Chen, Gang;Gai, Jun-Yi;Zhu, Yue-Lin;Yang, Li-Fei;Wei, Guo-Ping;Wang, Cong

  • Published : 20100400

Abstract

To establish a highly efficient system for shoot regeneration in vegetable soybean (Glycine max (L.) Merrill), explants were obtained from six genotypes and adventitious shoots were regenerated from cotyledonary nodes cultured on medium supplemented with different concentrations of N-phenyl-N'-1, 2, 3-thiadiazol-5-ylurea (thidiazuron TDZ) and 1-naphthylacetic acid (NAA). The most effective combination of plant growth regulators was selected first and then the effects of medium types, inoculation methods and genotypic differences on shoot regeneration were studied. The explants were inserted either vertically or horizontally into the medium and five basal media, including B5, 1/2 B5, MS, 1/2 MS, and MSB (MS salts and B5 organics), were tested. The shoot regeneration frequency of the six genotypes ranged from 53.5% to 88.9% and three of them reached 88.9%, 87.5% and 83.3%, respectively, on B5 medium supplemented with 1 $mg{\cdot}L^{-1}$ TDZ, 0.05 $mg{\cdot}L^{-1}$ NAA, and 5 $mg{\cdot}L^{-1}$ AgNO$_3$. The shoot regeneration frequency of explants cultured on B5 medium was significantly higher than that of the other four basal media. The vertically inserted explants were found to yield a higher shoot regeneration frequency than that of horizontally inserted ones; the maximum difference of regenerating percentages between the two methods was 37.5%. In summary, TDZ was an efficient plant growth regulator for shoot induction. B5 medium and vertically inserted explants promoted shoot regeneration. We believe this highly efficient shoot regeneration system will provide foundation for the further transgenic studies in vegetable soybean.

풋콩(Glycine max (L.) Merrill) 6개 품종의 자엽절 절편체로부터 thidiazuron(TDZ)과 NAA 농도를 달리한 배지에서 신초의 효율적인 재분화를 조사한 후, 가장 효과가 좋은 생장조절물질 조합으로 배지 종류, 접종방법 및 품종별 신초 재분화율을 조사하였다. 또한 절편체를 배지에 수직 또는 수평으로 치상하는 방법과 B5, 1/2 B5, MS, 1/2 MS, MSB(MS salts + B5 organics) 등의 5가지 기본 배지에 관하여 시험하였다. B5 배지에 1$mg{\cdot}L^{-1}$ TDZ, 0.05$mg{\cdot}L^{-1}$NAA, 5$mg{\cdot}L^{-1}$ AgNO$_3$를 첨가한 처리에서 6개 품종의 신초 재분화율이 55.3-88.9%로 높았다. 'L$\"{u}$ling No. 1'의 경우 수직으로 치상하는 것이 수평으로 치상하는 것보다 신초 재분화율이 37.5% 더 높았다. 따라서 풋콩은 TDZ를 처리한 B5 배지에 자엽절을 수직으로 치상할 때 신초 재분화율이 높았다.

Keywords

References

  1. Dhir, S.K., S. Dhir, and J.M. Widholm. 1992. Regeneration of fertile plants from protoplasts of soybean (Glycine max L. Merr.): Genotypic differences in culture response. Plant Cell Rep. 11:285-289
  2. Franklin, G., L. Carpenter, E. Davis, C.S. Reddy, D. Al-Abed, W. Abou Alaiwi, M. Parani, B. Smith, S.L. Goldman, and R.V. Sairam. 2004. Factors influencing regeneration of soybean from mature and immature cotyledons. Plant Growth Regul. 43:73-79 https://doi.org/10.1023/B:GROW.0000038359.86756.18
  3. Gai, J., M. Wang, and C. Chen. 2001. Historical origin and development of maodou production in China. Soybean Sci. 21:7-13
  4. Gamborg, O.L., R.A. Miller, and K. Ojiama. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:151-158 https://doi.org/10.1016/0014-4827(68)90403-5
  5. Ganeshan, S., S.V. Chodaparambil, M. B${\aa}$ga, D. B. Fowler, P. Hucl, B.G. Rossnagel, and R.N. Chibbar. 2006. In vitro regeneration of cereals based on multiple shoot induction from mature embryos in response to thidiazuron. Plant Cell Tiss. Org. Cult. 85:63-73 https://doi.org/10.1007/s11240-005-9049-z
  6. Haliloglu, K. 2006. Efficient regeneration system from wheat leaf base segments. Biol. Plant. 50:326-330 https://doi.org/10.1007/s10535-006-0045-x
  7. Kaneda, Y., Y. Tabei, S. Nishimura, K. Harada, T. Akihama, and K. Kitamura. 1997. Combination of thidiazuron and basal media with low salt concentrations increases the frequency of shoot organogenesis in soybeans [Glycine max (L.) Merr.]. Plant Cell Rep. 17:8-12 https://doi.org/10.1007/s002990050342
  8. Kita, Y., K. Nishizawa, M. Takahashi, M. Kitayama, and M. Ishimoto. 2007. Genetic improvement of the somatic embryogenesis and regeneration in soybean and transformation of the improved breeding lines. Plant Cell Rep. 26:439-447 https://doi.org/10.1007/s00299-006-0245-z
  9. Ma, X.-H. and T.-L. Wu. 2008. Rapid and efficient regeneration in soybean [Glycine max (L.) Merrill] from whole cotyledonary node explants. Acta Physiol. Plant. 30:209-216 https://doi.org/10.1007/s11738-007-0109-3
  10. Mok, M.C., D.W.S. Mok, D.J. Armstrong, K. Shudo, Y. Isogai, and T. Okamoto. 1982. Cytokinin activity of N-phenyl-N′-1, 2, 3-thiadiazol-5-ylurea (thidiazuron). Phytochemistry 21:1509-1511
  11. Moon, H. and D.F. Hildebrand. 2003. Effects of proliferation, maturation, and desiccation methods on conversion of soybean somatic embryos. In Vitro Cell. Dev. Biol. 39:623-628 https://doi.org/10.1079/IVP2003462
  12. Mundhara, R. and A. Rashid. 2006. Recalcitrant grain legume Vigna radiata, mung bean, made to regenerate on change of hormonal and cultural conditions. Plant Cell Tiss. Org. Cult. 85:265-270 https://doi.org/10.1007/s11240-005-9061-3
  13. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473-479 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  14. Nagata, R., E. Kawachi, Y. Hashimoto, and K. Shudo. 1993. Cytokinin-specific binding-protein in etiolated mung bean seedlings. Biochem. Biophys. Res. Commun. 191:543-549 https://doi.org/10.1006/bbrc.1993.1252
  15. Nguyen, M.V., C.D. Nickell, and J.M. Widholm. 2001. Selection for high seed oil content in soybean families derived from plants regenerated from protoplasts and tissue cultures. Theor. Appl. Genet. 102:1072-1075 https://doi.org/10.1007/s001220000493
  16. Olhoft, P.M. and D.A. Somers. 2001. L-cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonarynode cells. Plant Cell Rep. 20:706-711 https://doi.org/10.1007/s002990100379
  17. Palombi, M.A., B. Lombardo, and E. Caboni. 2007. In vitro regeneration of wild pear (Pyrus pyraster Burgsd) clones tolerant to Fe-chlorosis and somaclonal variation analysis by RAPD markers. Plant Cell Rep. 26:489-496 https://doi.org/10.1007/s00299-006-0256-9
  18. Paz, M.M., J.C. Martinez, A.B. Kalving, T.M. Fonger, and K. Wang. 2006. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep. 25:248 https://doi.org/10.1007/s00299-005-0113-2
  19. Pietsch, G.M. and N.O. Anderson. 2007. Epigenetic variation in tissue cultured Gaura lindheimeri. Plant Cell Tiss. Org. Cult. 89:91-103 https://doi.org/10.1007/s11240-007-9217-4
  20. Reichert, N.A., M.M. Young, and A.L. Woods. 2003. Adventitious organogenic regeneration from soybean genotypes representing nine maturity groups. Plant Cell Tiss. Org. Cult. 75:273-277 https://doi.org/10.1023/A:1025882728548
  21. Sairam, R.V., G. Franklin, R. Hassel, B. Smith, K. Meeker, N. Kashikar, M. Parani, D. Al. Abed, S. Ismail, K. Berry, and S.L. Goldman. 2003. A study on the effect of genotypes, plant growth regulators and sugars in promoting plant regeneration via organogenesis from soybean cotyledonary nodal callus. Plant Cell Tiss. Org. Cult. 75:79-85 https://doi.org/10.1023/A:1024649122748
  22. Sanikhani, M., S. Frello, and M. Serek. 2006. TDZ induces shoot regeneration in various Kalancho$\"{e}$ blossfeldiana Poelln. cultivars in the absence of auxin. Plant Cell Tiss. Org. Cult. 85:75-82 https://doi.org/10.1007/s11240-005-9050-6
  23. Schmidt, M.A., D.M. Tucker, E.B. Cahoon, and W.A. Parrott. 2005. Towards normalization of soybean somatic embryo maturation. Plant Cell Rep. 24:383-391 https://doi.org/10.1007/s00299-005-0950-z
  24. Shetty, K., Y. Asano, and K. Oosawa. 1992. Stimulation of in vitro shoot organogenesis in Glycine max (Merrill) by allantoin and amides. Plant Sci. 81:245-251 https://doi.org/10.1016/0168-9452(92)90048-Q
  25. Sujatha, G. and B.D. Ranjitha Kumari. 2007. High-frequency shoot multiplication in Artemisia vulgaris L. using thidiazuron. Plant Biotechnol. Rep. 1:149-154 https://doi.org/10.1007/s11816-007-0028-1
  26. Sujatha, K., B.M. Panda, and S. Hazra. 2008. De novo organogenesis and plant regeneration in Pongamia pinnata, oil producing tree legume. Trees 22:711-716 https://doi.org/10.1007/s00468-008-0230-y
  27. Thomas, J.C. and F.R. Katterman. 1986. Cytokinin activity induced by thidiazuron. Plant Physiol. 81:681-683 https://doi.org/10.1104/pp.81.2.681
  28. Torp, A.M., A. Olesen, E. Sten, P. Stahl Skov, U. Bindslev-Jensen, L.K. Poulsen, C. Bindslev-Jensen, and S.B. Andersen. 2006. Specific, semi-quantitative detection of the soybean allergen Gly m Bd 30K DNA by PCR. Food Control 17:30-36 https://doi.org/10.1016/j.foodcont.2004.08.005
  29. Wang, G. and Y. Xu. 2008. Hypocotyl-based Agrobacteriummediated transformation of soybean (Glycine max) and application for RNA interference. Plant Cell Rep. 27:1177-1184 https://doi.org/10.1007/s00299-008-0535-8
  30. Wang, H.-M., H.-M. Liu, W.-J. Wang, and Y.-G. Zu. 2008. Effects of thidiazuron, basal medium and light quality on adventitious shoot regeneration from in vitro cultured stem of Populus alba×P. berolinensis. Journal of Forestry Research 19:257-259 https://doi.org/10.1007/s11676-008-0042-3
  31. Wright, M.S., S.M. Koehler, M.A. Hinchee, and M.G. Carnes. 1986. Plant regeneration by organogenesis in Glycine max. Plant Cell Rep. 5:150-154 https://doi.org/10.1007/BF00269257
  32. Xiang, P., E.J. Haas, M.C. Zeece, J. Markwell, and G. Sarath. 2004. C-terminal 23 kDa polypeptide of soybean Gly m Bd 28 K is a potential allergen. Planta 220:56-63 https://doi.org/10.1007/s00425-004-1313-7
  33. Yoshida, T. 2002. Adventitious shoot formation from hypocotyl sections of mature soybean seeds. Breeding Sci. 52:1-8 https://doi.org/10.1270/jsbbs.52.1
  34. Yucesan, B., A.U. Turker, and E. Gurel. 2007. TDZ-induced high frequency plant regeneration through multiple shoot formation in witloof chicory (Cichorium intybus L.). Plant Cell Tiss. Org. Cult. 91:243-250 https://doi.org/10.1007/s11240-007-9290-8
  35. Zhao, Y., Y. Zhou, and B.W.W. Grout. 2006. Variation in leaf structures of micropropagated rhubarb (Rheum rhaponticum L.) PC49. Plant Cell Tiss. Org. Cult. 85:115-121 https://doi.org/10.1007/s11240-005-9053-3