DOI QR코드

DOI QR Code

Molecular Mechanism of Insulin Resistance in Obesity and Type 2 Diabetes

Choi, Kang-Duk;Kim, Young-Bum

  • Published : 20100600

Abstract

Insulin resistance is a major risk factor for developing type 2 diabetes caused by the inability of insulin-target tissues to respond properly to insulin, and contributes to the morbidity of obesity. Insulin action involves a series of signaling cascades initiated by insulin binding to its receptor, eliciting receptor autophosphorylation and activation of the receptor tyrosine kinase, resulting in tyrosine phosphorylation of insulin receptor substrates (IRSs). Phosphorylation of IRSs leads to activation of phosphatidylinositol 3-kinase (PI3K) and, subsequently, to activation of Akt and its downstream mediator AS160, all of which are important steps for stimulating glucose transport induced by insulin. Although the mechanisms underlying insulin resistance are not completely understood in skeletal muscle, it is thought to result, at least in part, from impaired insulin-dependent PI3K activation and downstream signaling. This review focuses on the molecular basis of skeletal muscle insulin resistance in obesity and type 2 diabetes. In addition, the effects of insulin-sensitizing agent treatment and lifestyle intervention of human insulin-resistant subjects on insulin signaling cascade are discussed. Furthermore, the role of Rho-kinase, a newly identified regulator of insulin action in insulin control of metabolism, is addressed.

Keywords

References

  1. DeFronzo RA. Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes. Diabetes Rev 1997;5:177-269
  2. Yki-Jarvinen H, Sahlin K, Ren JM, Koivisto VA. Localization of rate-limiting defect for glucose disposal in skeletal muscle of insulin-resistant type I diabetic patients. Diabetes 1990;39:157-167 https://doi.org/10.2337/diabetes.39.2.157
  3. Petersen KF, Shulman GI. Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus. Am J Cardiol 2002;90(5A):11G-18G
  4. Kahn BB. Lilly lecture 1995. Glucose transport: pivotal step in insulin action. Diabetes 1996;45:1644-1654 https://doi.org/10.2337/diabetes.45.11.1644
  5. Garvey WT, Huecksteadt TP, Matthaei S, Olefsky JM. Role of glucose transporters in the cellular insulin resistance of type II non-insulin-dependent diabetes mellitus. J Clin Invest 1988;81:1528-1536 https://doi.org/10.1172/JCI113485
  6. Pedersen O, Bak JF, Andersen PH, et al. Evidence against altered expression of GLUT$_1$ or GLUT$_4$ in skeletal muscle of patients with obesity or NIDDM. Diabetes 1990;39:865-870 https://doi.org/10.2337/diabetes.39.7.865
  7. Dohm GL, Elton CW, Friedman JE, et al. Decreased expression of glucose transporter in muscle from insulin-resistant patients. Am J Physiol 1991;260(3 Pt 1):E459-463
  8. Kim YB, Nikoulina SE, Ciaraldi TP, Henry RR, Kahn BB. Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes. J Clin Invest 1999;104:733-741 https://doi.org/10.1172/JCI6928
  9. White MF. The IRS-signaling system: a network of docking proteins that mediate insulin and cytokine action. Recent Prog Horm Res. 1998;53:119-138
  10. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006;7:85-96 https://doi.org/10.1038/nrm1837
  11. Sale EM, Sale GJ. Protein kinase B: signalling roles and therapeutic targeting. Cell Mol Life Sci 2008;65:113-127 https://doi.org/10.1007/s00018-007-7274-9
  12. Farese RV, Sajan MP, Standaert ML. Insulin-sensitive protein kinases (atypical protein kinase C and protein kinase B/Akt): actions and defects in obesity and type II diabetes. Exp Biol Med (Maywood) 2005;230:593-605 https://doi.org/10.1177/153537020523000901
  13. Sano H, Kane S, Sano E, et al. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem 2003;278:14599-14602 https://doi.org/10.1074/jbc.C300063200
  14. Bandyopadhyay G, Sajan MP, Kanoh Y, et al. PKC-zeta mediates insulin effects on glucose transport in cultured preadipocytederived human adipocytes. J Clin Endocrinol Metab 2002;87:716-723 https://doi.org/10.1210/jc.87.2.716
  15. Farese RV, Sajan MP, Yang H, et al. Muscle-specific knockout of PKC-lambda impairs glucose transport and induces metabolic and diabetic syndromes. J Clin Invest 2007;117:2289-2301 https://doi.org/10.1172/JCI31408
  16. Bourdeau A, Dube N, Tremblay ML. Cytoplasmic protein tyrosine phosphatases, regulation and function: the roles of PTP1B and TC-PTP. Curr Opin Cell Biol 2005;17:203-209 https://doi.org/10.1016/j.ceb.2005.02.001
  17. Harley EA, Levens N. Protein tyrosine phosphatase 1B inhibitors for the treatment of type 2 diabetes and obesity: recent advances. Curr Opin Investig Drugs 2003;4:1179-1189
  18. Vinciguerra M, Foti M. PTEN and SHIP2 phosphoinositide phosphatases as negative regulators of insulin signalling. Arch Physiol Biochem 2006;112:89-104 https://doi.org/10.1080/13813450600711359
  19. Sasaoka T, Wada T, Tsuneki H. Lipid phosphatases as a possible therapeutic target in cases of type 2 diabetes and obesity. Pharmacol Ther 2006;112:799-809 https://doi.org/10.1016/j.pharmthera.2006.06.001
  20. Cheatham B, Vlahos CJ, Cheatham L, et al. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol 1994;14:4902-4911 https://doi.org/10.1128/MCB.14.7.4902
  21. Le Marchand-Brustel Y, Gautier N, Cormont M, Van Obberghen E. Wortmannin inhibits the action of insulin but not that of okadaic acid in skeletal muscle: comparison with fat cells. Endocrinology 1995;136:3564-3570 https://doi.org/10.1210/en.136.8.3564
  22. Bjornholm M, Kawano Y, Lehtihet M, Zierath JR. Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity in skeletal muscle from NIDDM subjects after in vivo insulin stimulation. Diabetes 1997;46:524-527 https://doi.org/10.2337/diabetes.46.3.524
  23. Konishi H, Shinomura T, Kuroda S, Ono Y, Kikkawa U. Molecular cloning of rat RAC protein kinase alpha and beta and their association with protein kinase C zeta. Biochem Biophys Res Commun 1994;205:817-825 https://doi.org/10.1006/bbrc.1994.2738
  24. Konishi H, Kuroda S, Tanaka M, et al. Molecular cloning and characterization of a new member of the RAC protein kinase family: association of the pleckstrin homology domain of three types of RAC protein kinase with protein kinase C subspecies and beta gamma subunits of G proteins. Biochem Biophys Res Commun 1995;216:526-534 https://doi.org/10.1006/bbrc.1995.2654
  25. Kim YB, Peroni OD, Franke TF, Kahn BB. Divergent regulation of Akt1 and Akt2 isoforms in insulin target tissues of obese Zucker rats. Diabetes 2000;49:847-856 https://doi.org/10.2337/diabetes.49.5.847
  26. Walker KS, Deak M, Paterson A, et al. Activation of protein kinase B beta and gamma isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B alpha. Biochem J 1998;331:299-308 https://doi.org/10.1042/bj3310299
  27. Jiang ZY, Zhou QL, Coleman KA, et al. Insulin signaling through Akt/protein kinase B analyzed by small interfering RNAmediated gene silencing. Proc Natl Acad Sci U S A 2003;100:7569-7574 https://doi.org/10.1073/pnas.1332633100
  28. Zabolotny JM, Haj FG, Kim YB, et al. Transgenic overexpression of protein-tyrosine phosphatase 1B in muscle causes insulin resistance, but overexpression with leukocyte antigen-related phosphatase does not additively impair insulin action. J Biol Chem 2004;279:24844-24851 https://doi.org/10.1074/jbc.M310688200
  29. Zabolotny JM, Kim YB, Peroni OD, et al. Overexpression of the LAR (leukocyte antigen-related) protein-tyrosine phosphatase in muscle causes insulin resistance. Proc Natl Acad Sci U S A 2001;98:5187-5192 https://doi.org/10.1073/pnas.071050398
  30. Kim YB, Zhu JS, Zierath JR, et al. Glucosamine infusion in rats rapidly impairs insulin stimulation of phosphoinositide 3-kinase but does not alter activation of Akt/protein kinase B in skeletal muscle. Diabetes 1999;48:310-320 https://doi.org/10.2337/diabetes.48.2.310
  31. Krook A, Roth RA, Jiang XJ, Zierath JR, Wallberg-Henriksson H. Insulin-stimulated Akt kinase activity is reduced in skeletal muscle from NIDDM subjects. Diabetes 1998;47:1281-1286 https://doi.org/10.2337/diabetes.47.8.1281
  32. Rondinone CM, Carvalho E, Wesslau C, Smith UP. Impaired glucose transport and protein kinase B activation by insulin, but not okadaic acid, in adipocytes from subjects with Type II diabetes mellitus. Diabetologia 1999;42:819-825 https://doi.org/10.1007/s001250051232
  33. Cho H, Thorvaldsen JL, Chu Q, Feng F, Birnbaum MJ. Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem 2001;276:38349-38352 https://doi.org/10.1074/jbc.C100462200
  34. Cho H, Mu J, Kim JK, et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 2001;292:1728-1731 https://doi.org/10.1126/science.292.5522.1728
  35. Ceresa BP, Kao AW, Santeler SR, Pessin JE. Inhibition of clathrin-mediated endocytosis selectively attenuates specific insulin receptor signal transduction pathways. Mol Cell Biol 1998;18:3862-3870 https://doi.org/10.1128/MCB.18.7.3862
  36. Kane S, Sano H, Liu SC, et al. A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain. J Biol Chem 2002;277:22115-22118
  37. Nagase T, Ishikawa K, Miyajima N, et al. Prediction of the coding sequences of unidentified human genes. IX. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro. DNA Res 1998;5:31-39 https://doi.org/10.1093/dnares/5.1.31
  38. Morris NJ, Ross SA, Lane WS, et al. Sortilin is the major 110-kDa protein in GLUT4 vesicles from adipocytes. J Biol Chem 1998;273:3582-3587 https://doi.org/10.1074/jbc.273.6.3582
  39. Simpson F, Whitehead JP, James DE. GLUT4--at the cross roads between membrane trafficking and signal transduction. Traffic 2001;2:2-11 https://doi.org/10.1034/j.1600-0854.2001.020102.x
  40. Bruss MD, Arias EB, Lienhard GE, Cartee GD. Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity. Diabetes 2005;54:41-50 https://doi.org/10.2337/diabetes.54.1.41
  41. Deshmukh A, Coffey VG, Zhong Z, et al. Exercise-induced phosphorylation of the novel Akt substrates AS160 and filamin A in human skeletal muscle. Diabetes 2006;55:1776-1782 https://doi.org/10.2337/db05-1419
  42. Geraghty KM, Chen S, Harthill JE, et al. Regulation of multisite phosphorylation and 14-3-3 binding of AS160 in response to IGF-1, EGF, PMA and AICAR. Biochem J 2007;407:231-241 https://doi.org/10.1042/BJ20070649
  43. Sriwijitkamol A, Coletta DK, Wajcberg E, et al. Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: a time-course and dose-response study. Diabetes 2007;56:836-848 https://doi.org/10.2337/db06-1119
  44. Treebak JT, Glund S, Deshmukh A, et al. AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits. Diabetes 2006;55:2051-2058 https://doi.org/10.2337/db06-0175
  45. Hojlund K, Glintborg D, Andersen NR, et al. Impaired insulinstimulated phosphorylation of Akt and AS160 in skeletal muscle of women with polycystic ovary syndrome is reversed by pioglitazone treatment. Diabetes 2008;57:357-366 https://doi.org/10.2337/db07-0706
  46. Karlsson HK, Zierath JR, Kane S, et al. Insulin-stimulated phosphorylation of the Akt substrate AS160 is impaired in skeletal muscle of type 2 diabetic subjects. Diabetes 2005;54:1692-1697 https://doi.org/10.2337/diabetes.54.6.1692
  47. Kotani K, Ogawa W, Matsumoto M, et al. Requirement of atypical protein kinase c lambda for insulin stimulation of glucose uptake but not for Akt activation in 3T3-L1 adipocytes. Mol Cell Biol 1998;18:6971-6982 https://doi.org/10.1128/MCB.18.12.6971
  48. Bandyopadhyay G, Kanoh Y, Sajan MP, Standaert ML, Farese RV. Effects of adenoviral gene transfer of wild-type, constitutively active, and kinase-defective protein kinase C-lambda on insulinstimulated glucose transport in L6 myotubes. Endocrinology 2000;141:4120-4127 https://doi.org/10.1210/en.141.11.4120
  49. Bandyopadhyay G, Standaert ML, Galloway L, Moscat J, Farese RV. Evidence for involvement of protein kinase C (PKC)-zeta and noninvolvement of diacylglycerol-sensitive PKCs in insulinstimulated glucose transport in L6 myotubes. Endocrinology 1997;138:4721-4731 https://doi.org/10.1210/en.138.11.4721
  50. Bandyopadhyay D, Kusari A, Kenner KA, et al. Protein-tyrosine phosphatase 1B complexes with the insulin receptor in vivo and is tyrosine-phosphorylated in the presence of insulin. J Biol Chem 1997;272:1639-1645 https://doi.org/10.1074/jbc.272.3.1639
  51. Etgen GJ, Valasek KM, Broderick CL, Miller AR. In vivo adenoviral delivery of recombinant human protein kinase C-zeta stimulates glucose transport activity in rat skeletal muscle. J Biol Chem 1999;274:22139-22142 https://doi.org/10.1074/jbc.274.32.22139
  52. Bandyopadhyay G, Standaert ML, Sajan MP, et al. Dependence of insulin-stimulated glucose transporter 4 translocation on 3-phosphoinositide-dependent protein kinase-1 and its target threonine-410 in the activation loop of protein kinase C-zeta. Mol Endocrinol 1999;13:1766-1772 https://doi.org/10.1210/me.13.10.1766
  53. Kanoh Y, Bandyopadhyay G, Sajan MP, Standaert ML, Farese RV. Thiazolidinedione treatment enhances insulin effects on protein kinase C-zeta/lambda activation and glucose transport in adipocytes of nondiabetic and Goto-Kakizaki type II diabetic rats. J Biol Chem 2000;275:16690-16696 https://doi.org/10.1074/jbc.M000287200
  54. Kanoh Y, Bandyopadhyay G, Sajan MP, Standaert ML, Farese RV. Rosiglitazone, insulin treatment, and fasting correct defective activation of protein kinase C-zeta/lambda by insulin in vastus lateralis muscles and adipocytes of diabetic rats. Endocrinology 2001;142:1595-1605 https://doi.org/10.1210/en.142.4.1595
  55. Vollenweider P, Menard B, Nicod P. Insulin resistance, defective insulin receptor substrate 2-associated phosphatidylinositol-3' kinase activation, and impaired atypical protein kinase C (zeta/lambda) activation in myotubes from obese patients with impaired glucose tolerance. Diabetes 2002;51:1052-1059 https://doi.org/10.2337/diabetes.51.4.1052
  56. Standaert ML, Ortmeyer HK, Sajan MP, et al. Skeletal muscle insulin resistance in obesity-associated type 2 diabetes in monkeys is linked to a defect in insulin activation of protein kinase C-zeta/lambda/iota. Diabetes 2002;51:2936-2943 https://doi.org/10.2337/diabetes.51.10.2936
  57. Mudaliar S, Henry RR. New oral therapies for type 2 diabetes mellitus: The glitazones or insulin sensitizers. Annu Rev Med 2001;52:239-257 https://doi.org/10.1146/annurev.med.52.1.239
  58. Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature 2000;405:421-424 https://doi.org/10.1038/35013000
  59. Inzucchi SE, Maggs DG, Spollett GR, et al. Efficacy and metabolic effects of metformin and troglitazone in type II diabetes mellitus. N Engl J Med 1998;338:867-872 https://doi.org/10.1056/NEJM199803263381303
  60. Kim YB, Ciaraldi TP, Kong A, et al. Troglitazone but not metformin restores insulin-stimulated phosphoinositide 3-kinase activity and increases p110beta protein levels in skeletal muscle of type 2 diabetic subjects. Diabetes 2002;51:443-448 https://doi.org/10.2337/diabetes.51.2007.S443
  61. Storgaard H, Song XM, Jensen CB, et al. Insulin signal transduction in skeletal muscle from glucose-intolerant relatives of type 2 diabetic patients [corrected]. Diabetes 2001;50:2770-2778 https://doi.org/10.2337/diabetes.50.12.2770
  62. Karlsson HK, Hällsten K, Bjornholm M, et al. Effects of metformin and rosiglitazone treatment on insulin signaling and glucose uptake in patients with newly diagnosed type 2 diabetes: a randomized controlled study. Diabetes 2005;54:1459-1467 https://doi.org/10.2337/diabetes.54.5.1459
  63. Reginato MJ, Lazar MA. Mechanisms by which thiazolidinediones enhance insulin action. Trends Endocrinol Metab 1999;10:9-13 https://doi.org/10.1016/S1043-2760(98)00110-6
  64. Kintscher U, Law RE. PPARgamma-mediated insulin sensitization: the importance of fat versus muscle. Am J Physiol Endocrinol Metab 2005;288:E287-E291 https://doi.org/10.1152/ajpendo.00440.2004
  65. Roden M, Price TB, Perseghin G, et al. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 1996;97:2859-2865 https://doi.org/10.1172/JCI118742
  66. Antonucci T, Whitcomb R, McLain R, Lockwood D, Norris RM. Impaired glucose tolerance is normalized by treatment with the thiazolidinedione troglitazone. Diabetes Care 1997;20:188-193 https://doi.org/10.2337/diacare.20.2.188
  67. Petersen KF, Krssak M, Inzucchi S, et al. Mechanism of troglitazone action in type 2 diabetes. Diabetes 2000;49:827-831 https://doi.org/10.2337/diabetes.49.5.827
  68. Schmitz-Peiffer C, Oakes ND, Browne CL, Kraegen EW, Biden TJ. Reversal of chronic alterations of skeletal muscle protein kinase C from fat-fed rats by BRL-49653. Am J Physiol 1997;273(5 Pt 1):E915-E921
  69. Lewis RE, Volle DJ, Sanderson SD. Phorbol ester stimulates phosphorylation on serine 1327 of the human insulin receptor. J Biol Chem 1994;269:26259-26266
  70. De Fea K, Roth RA. Protein kinase C modulation of insulin receptor substrate-1 tyrosine phosphorylation requires serine 612. Biochemistry 1997;36:12939-12947 https://doi.org/10.1021/bi971157f
  71. Bailey CJ, Turner RC. Metformin. N Engl J Med 1996;334:574-579 https://doi.org/10.1056/NEJM199602293340906
  72. Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med 1995;333:550-554 https://doi.org/10.1056/NEJM199508313330903
  73. Dunn CJ, Peters DH. Metformin. A review of its pharmacological properties and therapeutic use in non-insulin-dependent diabetes mellitus. Drugs 1995;49:721-749 https://doi.org/10.2165/00003495-199549050-00007
  74. Matthaei S, Hamann A, Klein HH, et al. Association of Metformin's effect to increase insulin-stimulated glucose transport with potentiation of insulin-induced translocation of glucose transporters from intracellular pool to plasma membrane in rat adipocytes. Diabetes 1991;40:850-857 https://doi.org/10.2337/diabetes.40.7.850
  75. Fantus IG, Brosseau R. Mechanism of action of metformin: insulin receptor and postreceptor effects in vitro and in vivo. J Clin Endocrinol Metab 1986;63:898-905 https://doi.org/10.1210/jcem-63-4-898
  76. Pryor PR, Liu SC, Clark AE, et al. Chronic insulin effects on insulin signalling and GLUT4 endocytosis are reversed by metformin. Biochem J 2000;348 Pt 1:83-91 https://doi.org/10.1042/0264-6021:3480083
  77. Jazet IM, Schaart G, Gastaldelli A, et al. Loss of 50% of excess weight using a very low energy diet improves insulin-stimulated glucose disposal and skeletal muscle insulin signalling in obese insulin-treated type 2 diabetic patients. Diabetologia 2008;51:309-319 https://doi.org/10.1007/s00125-007-0862-2
  78. Kim YB, Kotani K, Ciaraldi TP, Henry RR, Kahn BB. Insulinstimulated protein kinase C lambda/zeta activity is reduced in skeletal muscle of humans with obesity and type 2 diabetes: reversal with weight reduction. Diabetes 2003;52:1935-1942 https://doi.org/10.2337/diabetes.52.8.1935
  79. Beeson M, Sajan MP, Dizon M, et al. Activation of protein kinase C-zeta by insulin and phosphatidylinositol-3,4,5-$(PO_4)_3$ is defective in muscle in type 2 diabetes and impaired glucose tolerance: amelioration by rosiglitazone and exercise. Diabetes. 2003;52:1926-1934 https://doi.org/10.2337/diabetes.52.8.1926
  80. Ryder JW, Yang J, Galuska D, et al. Use of a novel impermeable biotinylated photolabeling reagent to assess insulin- and hypoxia-stimulated cell surface GLUT4 content in skeletal muscle from type 2 diabetic patients. Diabetes 2000;49:647-654 https://doi.org/10.2337/diabetes.49.4.647
  81. Friedman JE, Dohm GL, Leggett-Frazier N, et al. Restoration of insulin responsiveness in skeletal muscle of morbidly obese patients after weight loss. Effect on muscle glucose transport and glucose transporter GLUT4. J Clin Invest 1992;89:701-705 https://doi.org/10.1172/JCI115638
  82. Goldstein BJ, Ahmad F, Ding W, Li PM, Zhang WR. Regulation of the insulin signalling pathway by cellular protein-tyrosine phosphatases. Mol Cell Biochem 1998;182:91-99 https://doi.org/10.1023/A:1006812218502
  83. Ahmad F, Considine RV, Goldstein BJ. Increased abundance of the receptor-type protein-tyrosine phosphatase LAR accounts for the elevated insulin receptor dephosphorylating activity in adipose tissue of obese human subjects. J Clin Invest 1995;95:2806-2812 https://doi.org/10.1172/JCI117985
  84. Ahmad F, Goldstein BJ. Increased abundance of specific skeletal muscle protein-tyrosine phosphatases in a genetic model of insulin-resistant obesity and diabetes mellitus. Metabolism 1995;44:1175-1184 https://doi.org/10.1016/0026-0495(95)90012-8
  85. Ahmad F, Goldstein BJ. Functional association between the insulin receptor and the transmembrane protein-tyrosine phosphatase LAR in intact cells. J Biol Chem 1997;272:448-457 https://doi.org/10.1074/jbc.272.1.448
  86. Ahmad F, Goldstein BJ. Effect of tumor necrosis factor-alpha on the phosphorylation of tyrosine kinase receptors is associated with dynamic alterations in specific proteintyrosine phosphatases. J Cell Biochem 1997;64:117-127 https://doi.org/10.1002/(SICI)1097-4644(199701)64:1<117::AID-JCB14>3.0.CO;2-I
  87. McGuire MC, Fields RM, Nyomba BL, et al. Abnormal regulation of protein tyrosine phosphatase activities in skeletal muscle of insulin-resistant humans. Diabetes 1991;40:939-942 https://doi.org/10.2337/diabetes.40.7.939
  88. Ahmad F, Azevedo JL, Cortright R, Dohm GL, Goldstein BJ. Alterations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes. J Clin Invest 1997;100:449-458 https://doi.org/10.1172/JCI119552
  89. Zabolotny JM, Kim YB, Welsh LA, et al. Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J Biol Chem 2008;283:14230-14241 https://doi.org/10.1074/jbc.M800061200
  90. Klaman LD, Boss O, Peroni OD, et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice. Mol Cell Biol 2000;20:5479-5489 https://doi.org/10.1128/MCB.20.15.5479-5489.2000
  91. Elchebly M, Payette P, Michaliszyn E, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999;283:1544-1548 https://doi.org/10.1126/science.283.5407.1544
  92. Delibegovic M, Zimmer D, Kauffman C, et al. Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes 2009;58:590-599 https://doi.org/10.2337/db08-0913
  93. Haj FG, Zabolotny JM, Kim YB, Kahn BB, Neel BG. Liverspecific protein-tyrosine phosphatase 1B (PTP1B) re-expression alters glucose homeostasis of PTP1B-/-mice. J Biol Chem 2005;280:15038-15046 https://doi.org/10.1074/jbc.M413240200
  94. Rondinone CM, Trevillyan JM, Clampit J, et al. Protein tyrosine phosphatase 1B reduction regulates adiposity and expression of genes involved in lipogenesis. Diabetes 2002;51:2405-2411 https://doi.org/10.2337/diabetes.51.8.2405
  95. Zinker BA, Rondinone CM, Trevillyan JM, et al. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. Proc Natl Acad Sci U S A 2002;99:11357-11362 https://doi.org/10.1073/pnas.142298199
  96. Fukuda S, Ohta T, Sakata S, et al. Pharmacological profiles of a novel protein tyrosine phosphatase 1B inhibitor, JTT-551. Diabetes Obes Metab 2010;12:299-306 https://doi.org/10.1111/j.1463-1326.2009.01162.x
  97. Matsui T, Amano M, Yamamoto T, et al. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J 1996;15:2208-2216
  98. Nakagawa O, Fujisawa K, Ishizaki T, et al. ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett 1996;392:189-193 https://doi.org/10.1016/0014-5793(96)00811-3
  99. Ishizaki T, Maekawa M, Fujisawa K, Lim L. The small GTPbinding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J 1996;15:1885-1893
  100. Leung T, Manser E, Tan L, et al. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem 1995;270:29051-29054 https://doi.org/10.1074/jbc.270.49.29051
  101. Farah S, Agazie Y, Ohan N, Ngsee JK, Liu XJ. A rho-associated protein kinase, ROKalpha, binds insulin receptor substrate-1 and modulates insulin signaling. J Biol Chem 1998;273:4740-4746 https://doi.org/10.1074/jbc.273.8.4740
  102. Begum N, Sandu OA, Ito M, Lohmann SM, Smolenski A. Active Rho kinase (ROK-alpha) associates with insulin receptor substrate-1 and inhibits insulin signaling in vascular smooth muscle cells. J Biol Chem 2002;277:6214-6222 https://doi.org/10.1074/jbc.M110508200
  103. Furukawa N, Ongusaha P, Jahng WJ, et al. Role of Rho-kinase in regulation of insulin action and glucose homeostasis. Cell Metab 2005;2:119-129 https://doi.org/10.1016/j.cmet.2005.06.011
  104. Zick Y. Insulin resistance: a phosphorylation-based uncoupling of insulin signaling. Trends Cell Biol 2001;11:437-441 https://doi.org/10.1016/S0962-8924(01)02129-8
  105. Lee DH, Shi J, Jeoung NH, et al. Targeted disruption of ROCK1 causes insulin resistance in vivo. J Biol Chem 2009;284:11776-11780 https://doi.org/10.1074/jbc.C900014200

Cited by

  1. Hyperinsulinemia Induces Insulin Resistance in Dorsal Root Ganglion Neurons vol.152, pp.10, 2010, https://doi.org/10.1210/en.2011-0029
  2. Histone Deacetylase (HDAC) Inhibition as a Novel Treatment for Diabetes Mellitus vol.17, pp.5, 2010, https://doi.org/10.2119/molmed.2011.00021
  3. Concentration of Catechins and Caffeine in Black Tea Affects Suppression of Fat Accumulation and Hyperglycemia in High-fat Diet-fed Mice vol.17, pp.4, 2011, https://doi.org/10.3136/fstr.17.353
  4. Molecular mechanisms of development of cellular insulin resistance vol.27, pp.4, 2010, https://doi.org/10.7124/bc.000106
  5. A Role for Immature Myeloid Cells in Immune Senescence vol.186, pp.2, 2010, https://doi.org/10.4049/jimmunol.1002987
  6. Genetic and epigenetic events in diabetic wound healing vol.8, pp.1, 2010, https://doi.org/10.1111/j.1742-481x.2010.00745.x
  7. Overexpression of Insulin Degrading Enzyme could Greatly Contribute to Insulin Down-regulation Induced by Short-Term Swimming Exercise vol.27, pp.1, 2010, https://doi.org/10.5625/lar.2011.27.1.29
  8. Studying the genetic predisposing factors in the pathogenesis of acne vulgaris vol.72, pp.9, 2010, https://doi.org/10.1016/j.humimm.2011.05.012
  9. Anti-Diabetic Effect of Pectinase-Processed Ginseng Radix (GINST) in High Fat Diet-Fed ICR Mice vol.35, pp.3, 2010, https://doi.org/10.5142/jgr.2011.35.3.308
  10. Hibiscus sabdariffa Polyphenolic Extract Inhibits Hyperglycemia, Hyperlipidemia, and Glycation-Oxidative Stress while Improving Insulin Resistance vol.59, pp.18, 2010, https://doi.org/10.1021/jf2022379
  11. High fat diet induced diabetic cardiomyopathy vol.85, pp.5, 2010, https://doi.org/10.1016/j.plefa.2011.04.018
  12. The Skeletal Muscle Wnt Pathway May Modulate Insulin Resistance and Muscle Development in a Diet‐Induced Obese Rat Model vol.20, pp.8, 2012, https://doi.org/10.1038/oby.2012.42
  13. Controversies surrounding the clinical potential of cinnamon for the management of diabetes vol.14, pp.6, 2010, https://doi.org/10.1111/j.1463-1326.2011.01538.x
  14. Continuous Parenteral and Enteral Nutrition Induces Metabolic Dysfunction in Neonatal Pigs vol.36, pp.5, 2010, https://doi.org/10.1177/0148607112444756
  15. Long-term high-fat-diet feeding induces skeletal muscle mitochondrial biogenesis in rats in a sex-dependent and muscle-type specific manner vol.9, pp.1, 2012, https://doi.org/10.1186/1743-7075-9-15
  16. Insulin Resistance and the Polycystic Ovary Syndrome Revisited: An Update on Mechanisms and Implications vol.33, pp.6, 2010, https://doi.org/10.1210/er.2011-1034
  17. Evaluation of the Association between Arsenic and Diabetes: A National Toxicology Program Workshop Review vol.120, pp.12, 2010, https://doi.org/10.1289/ehp.1104579
  18. Small G proteins and their regulators in cellular signalling vol.353, pp.1, 2010, https://doi.org/10.1016/j.mce.2011.11.005
  19. Histone deacetylases and their inhibitors: molecular mechanisms and therapeutic implications in diabetes mellitus vol.2, pp.4, 2010, https://doi.org/10.1016/j.apsb.2012.06.005
  20. Effects of Vitamin D Treatment on Skeletal Muscle Histology and Ultrastructural Changes in a Rodent Model vol.17, pp.8, 2010, https://doi.org/10.3390/molecules17089081
  21. A methodology for global-sensitivity analysis of time-dependent outputs in systems biology modelling vol.9, pp.74, 2010, https://doi.org/10.1098/rsif.2011.0891
  22. Association of the apolipoprotein B/apolipoprotein A-I ratio and low-density lipoprotein cholesterol with insulin resistance in a Chinese population with abdominal obesity vol.49, pp.6, 2012, https://doi.org/10.1007/s00592-012-0419-9
  23. The roots of Atractylodes japonica Koidzumi promote adipogenic differentiation via activation of the insulin signaling pathway in 3T3-L1 cells vol.12, pp.None, 2010, https://doi.org/10.1186/1472-6882-12-154
  24. Fucosylated chondroitin sulfate from Acaudina molpadioides improves hyperglycemia via activation of PKB/GLUT4 signaling in skeletal muscle of insulin resistant mice vol.4, pp.11, 2010, https://doi.org/10.1039/c3fo60247h
  25. The kidney as a new target for antidiabetic drugs: SGLT2 inhibitors vol.38, pp.5, 2010, https://doi.org/10.1111/jcpt.12077
  26. Dietary supplementation with long-chain monounsaturated fatty acids attenuates obesity-related metabolic dysfunction and increases expression of PPAR gamma in adipose tissue in type 2 diabetic KK-A vol.10, pp.1, 2010, https://doi.org/10.1186/1743-7075-10-16
  27. The extract of Cinnamomum cassia twigs inhibits adipocyte differentiation via activation of the insulin signaling pathway in 3T3-L1 preadipocytes vol.51, pp.8, 2010, https://doi.org/10.3109/13880209.2013.772211
  28. IL-15 that a regulator of TNF-α in patients with diabetes mellitus type 2 vol.80, pp.6, 2010, https://doi.org/10.1016/j.mehy.2013.03.009
  29. Effect of Laparoscopic Roux-en-Y gastric Bypass on Body Composition and Insulin Resistance in Chinese Patients with Type 2 Diabetes Mellitus vol.24, pp.4, 2010, https://doi.org/10.1007/s11695-013-1116-7
  30. Aerobic Exercise Plus Weight Loss Improves Insulin Sensitivity and Increases Skeletal Muscle Glycogen Synthase Activity in Older Men vol.69, pp.7, 2010, https://doi.org/10.1093/gerona/glt200
  31. The use of Complementary and Alternative Medicines (CAMs) in the treatment of diabetes mellitus: is continued use safe and effective? vol.13, pp.1, 2014, https://doi.org/10.1186/1475-2891-13-102
  32. Age-Related Impairment of Pancreatic Beta-Cell Function: Pathophysiological and Cellular Mechanisms vol.5, pp.None, 2010, https://doi.org/10.3389/fendo.2014.00138
  33. Gestational Protein Restriction Impairs Insulin-Regulated Glucose Transport Mechanisms in Gastrocnemius Muscles of Adult Male Offspring vol.155, pp.8, 2014, https://doi.org/10.1210/en.2014-1094
  34. Hibiscus sabdariffa Polyphenols Alleviate Insulin Resistance and Renal Epithelial to Mesenchymal Transition: A Novel Action Mechanism Mediated by Type 4 Dipeptidyl Peptidase vol.62, pp.40, 2010, https://doi.org/10.1021/jf5024092
  35. Enhanced susceptibility of ovaries from obese mice to 7,12-dimethylbenz[a]anthracene-induced DNA damage vol.281, pp.2, 2010, https://doi.org/10.1016/j.taap.2014.10.004
  36. Identification and validation co-differentially expressed genes with NAFLD and insulin resistance vol.48, pp.1, 2010, https://doi.org/10.1007/s12020-014-0247-5
  37. Oleanolic Acid Attenuates Insulin Resistance via NF- κ B to Regulate the IRS1-GLUT4 Pathway in HepG2 Cells vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/643102
  38. The glycaemic outcomes of Cinnamon, a review of the experimental evidence and clinical trials vol.14, pp.1, 2010, https://doi.org/10.1186/s12937-015-0098-9
  39. Resveratrol attenuates intermittent hypoxia-induced insulin resistance in rats: Involvement of Sirtuin 1 and the phosphatidylinositol-4,5-bisphosphate 3-kinase/AKT pathway vol.11, pp.1, 2010, https://doi.org/10.3892/mmr.2014.2762
  40. Effect of Hypericum perforatum L. Extract on Insulin Resistance and Lipid Metabolic Disorder in High-Fat-Diet Induced Obese Mice vol.29, pp.1, 2015, https://doi.org/10.1002/ptr.5230
  41. Impaired Translocation of GLUT4 Results in Insulin Resistance of Atrophic Soleus Muscle vol.2015, pp.None, 2010, https://doi.org/10.1155/2015/291987
  42. High glucose activates Raw264.7 macrophages through RhoA kinase-mediated signaling pathway vol.27, pp.2, 2010, https://doi.org/10.1016/j.cellsig.2014.11.012
  43. Reciprocal regulation of insulin and plasma 5′-AMP in glucose homeostasis in mice vol.224, pp.3, 2010, https://doi.org/10.1530/joe-14-0501
  44. Ginseng Berry Extract Supplementation Improves Age-Related Decline of Insulin Signaling in Mice vol.7, pp.4, 2015, https://doi.org/10.3390/nu7043038
  45. Celastrol Protects against Antimycin A-Induced Insulin Resistance in Human Skeletal Muscle Cells vol.20, pp.5, 2010, https://doi.org/10.3390/molecules20058242
  46. Heat Stress Alters Ovarian Insulin-Mediated Phosphatidylinositol-3 Kinase and Steroidogenic Signaling in Gilt Ovaries1 vol.92, pp.6, 2010, https://doi.org/10.1095/biolreprod.114.126714
  47. Mitochondrial dysfunction as a central event for mechanisms underlying insulin resistance: the roles of long chain fatty acids vol.31, pp.5, 2010, https://doi.org/10.1002/dmrr.2601
  48. 1-Deoxynojirimycin Alleviates Insulin Resistance via Activation of Insulin Signaling PI3K/AKT Pathway in Skeletal Muscle of db/db Mice vol.20, pp.12, 2010, https://doi.org/10.3390/molecules201219794
  49. Natural Triterpenoids for the Treatment of Diabetes Mellitus: A Review vol.11, pp.10, 2010, https://doi.org/10.1177/1934578x1601101037
  50. Trigonella foenum-graecum water extract improves insulin sensitivity and stimulates PPAR and γ gene expression in high fructose-fed insulin-resistant rats vol.5, pp.1, 2010, https://doi.org/10.4103/2277-9175.178799
  51. 5-Aminoimidazole-4-carboxyamide-1-β-D-ribofranoside stimulates the rat enhancer of split- and hairy-related protein-2 gene via atypical protein kinase C lambda vol.159, pp.4, 2010, https://doi.org/10.1093/jb/mvv116
  52. Effect of bisphenol A on SOCS-3 and insulin signaling transduction in 3T3-L1 adipocytes vol.14, pp.1, 2016, https://doi.org/10.3892/mmr.2016.5224
  53. Insulin in the nervous system and the mind: Functions in metabolism, memory, and mood vol.5, pp.8, 2010, https://doi.org/10.1016/j.molmet.2016.06.011
  54. Oral leptin supplementation throughout lactation in rats prevents later metabolic alterations caused by gestational calorie restriction vol.41, pp.3, 2010, https://doi.org/10.1038/ijo.2016.241
  55. Challenging of AS160/TBC1D4 Alters Intracellular Lipid milieu in L6 Myotubes Incubated With Palmitate vol.232, pp.9, 2010, https://doi.org/10.1002/jcp.25632
  56. Antidiabetic Effects of a Chinese Herbal Medicinal Compound Sangguayin Preparation via PI3K/Akt Signaling Pathway in db/db Mice vol.2018, pp.None, 2010, https://doi.org/10.1155/2018/2010423
  57. Carnosic acid protects mice from high-fat diet-induced NAFLD by regulating MARCKS vol.42, pp.1, 2010, https://doi.org/10.3892/ijmm.2018.3593
  58. Cerebral insulin resistance: current concepts of the pathogenesis and possible therapeutic strategies vol.118, pp.1, 2010, https://doi.org/10.17116/jnevro20181181192-95
  59. Caralluma fimbriataand metformin protection of rat pancreas from high fat diet induced oxidative stress vol.93, pp.3, 2010, https://doi.org/10.1080/10520295.2017.1406615
  60. Impact of repeated lipopolysaccharide administration on ovarian signaling during the follicular phase of the estrous cycle in post-pubertal pigs vol.96, pp.9, 2010, https://doi.org/10.1093/jas/sky226
  61. Human placental exosomes in gestational diabetes mellitus carry a specific set of miRNAs associated with skeletal muscle insulin sensitivity vol.132, pp.22, 2018, https://doi.org/10.1042/cs20180487
  62. Abelmoschus esculentus subfractions improved nephropathy with regulating dipeptidyl peptidase-4 and type 1 glucagon-like peptide receptor in type 2 diabetic rats vol.27, pp.1, 2010, https://doi.org/10.1016/j.jfda.2018.07.004
  63. BRD7 deficiency leads to the development of obesity and hyperglycemia vol.9, pp.None, 2010, https://doi.org/10.1038/s41598-019-41713-0
  64. Exploring the Pharmacological Mechanism of Quercetin-Resveratrol Combination for Polycystic Ovary Syndrome: A Systematic Pharmacological Strategy-Based Research vol.9, pp.None, 2010, https://doi.org/10.1038/s41598-019-54408-3
  65. Fuzhu jiangtang granules combined with metformin reduces insulin resistance in skeletal muscle of diabetic rats via PI3K/Akt signaling vol.57, pp.1, 2010, https://doi.org/10.1080/13880209.2019.1659831
  66. Anxa2 gene silencing attenuates obesity-induced insulin resistance by suppressing the NF-κB signaling pathway vol.316, pp.2, 2010, https://doi.org/10.1152/ajpcell.00242.2018
  67. Type 2 diabetes mellitus risk and exercise: is resistin involved? vol.59, pp.2, 2010, https://doi.org/10.23736/s0022-4707.18.08258-0
  68. Oral herbal supplement containing magnesium sulfate improve metabolic control and insulin resistance in non-diabetic overweight patients: A randomized double blind clinical trial vol.33, pp.None, 2010, https://doi.org/10.34171/mjiri.33.2
  69. Ginsenoside Rb1 as an Anti-Diabetic Agent and Its Underlying Mechanism Analysis vol.8, pp.3, 2019, https://doi.org/10.3390/cells8030204
  70. Insulin promotes macrophage phenotype transition through PI3K/Akt and PPAR‐γ signaling during diabetic wound healing vol.234, pp.4, 2010, https://doi.org/10.1002/jcp.27185
  71. Panax notoginseng saponins alleviate skeletal muscle insulin resistance by regulating the IRS 1– PI 3K– AKT signaling pathway and GLUT 4 expression vol.9, pp.5, 2010, https://doi.org/10.1002/2211-5463.12635
  72. Hesperidin ameliorates insulin resistance by regulating the IRS1‐GLUT2 pathway via TLR4 in HepG2 cells vol.33, pp.6, 2010, https://doi.org/10.1002/ptr.6358
  73. Abelmoschus esculentus subfractions attenuate beta amyloid-induced neuron apoptosis by regulating DPP-4 with improving insulin resistance signals vol.14, pp.6, 2010, https://doi.org/10.1371/journal.pone.0217400
  74. Potential of Gentiana lutea for the Treatment of Obesity-associated Diseases vol.25, pp.18, 2010, https://doi.org/10.2174/1381612825666190708215743
  75. A correlational study between serum asymmetric dimethylarginine level and impaired glucose tolerance patients associated with obesity vol.234, pp.7, 2010, https://doi.org/10.1002/jcp.27743
  76. Effect of Long-term Administration of Oral Magnesium Sulfate and Insulin to Reduce Streptozotocin-Induced Hyperglycemia in Rats: the Role of Akt2 and IRS1 Gene Expressions vol.190, pp.2, 2019, https://doi.org/10.1007/s12011-018-1555-z
  77. Hyperinsulinemia or Insulin Resistance: What Impacts the Progression of Alzheimer’s Disease? vol.72, pp.suppl1, 2010, https://doi.org/10.3233/jad-190808
  78. Letrozole Rat Model Mimics Human Polycystic Ovarian Syndrome and Changes in Insulin Signal Pathways vol.26, pp.None, 2010, https://doi.org/10.12659/msm.923073
  79. Integrated Network Pharmacology Analysis and Experimental Validation to Reveal the Mechanism of Anti-Insulin Resistance Effects of Moringa oleifera Seeds vol.14, pp.None, 2020, https://doi.org/10.2147/dddt.s265198
  80. Dietary Polyphenols and Gene Expression in Molecular Pathways Associated with Type 2 Diabetes Mellitus: A Review vol.21, pp.1, 2010, https://doi.org/10.3390/ijms21010140
  81. Apolipoprotein J is a hepatokine regulating muscle glucose metabolism and insulin sensitivity vol.11, pp.1, 2010, https://doi.org/10.1038/s41467-020-15963-w
  82. Effects of collagen peptides from skate (Raja kenojei) skin on improvements of the insulin signaling pathway via attenuation of oxidative stress and inflammation vol.11, pp.3, 2010, https://doi.org/10.1039/c9fo02667c
  83. Identification of potential leukocyte antigen-related protein (PTP-LAR) inhibitors through 3D QSAR pharmacophore-based virtual screening and molecular dynamics simulation vol.38, pp.14, 2010, https://doi.org/10.1080/07391102.2019.1676825
  84. Effect of Differents Cowmilk and Soymilk (soy yogurt) Formulation on Blood Glucose Level and Glut4 Gene Expression in Rats Soleus Muscle vol.23, pp.12, 2010, https://doi.org/10.3923/pjbs.2020.1607.1613
  85. Abelmoschus esculentus subfractions attenuate Aβ and tau by regulating DPP-4 and insulin resistance signals vol.20, pp.1, 2010, https://doi.org/10.1186/s12906-020-03163-4
  86. Mechanism of Electroacupuncture Regulating IRS-1 Phosphorylation in Skeletal Muscle to Improve Insulin Sensitivity vol.2021, pp.None, 2010, https://doi.org/10.1155/2021/8631475
  87. Evaluation of the Hypoglycemic Activity of Morchella conica by Targeting Protein Tyrosine Phosphatase 1B vol.12, pp.None, 2010, https://doi.org/10.3389/fphar.2021.661803
  88. DNA methylation in adipocytes from visceral and subcutaneous adipose tissue influences insulin-signaling gene expression in obese individuals vol.45, pp.3, 2010, https://doi.org/10.1038/s41366-020-00729-7
  89. Polycystic Ovary Syndrome in Insulin-Resistant Adolescents with Obesity: The Role of Nutrition Therapy and Food Supplements as a Strategy to Protect Fertility vol.13, pp.6, 2010, https://doi.org/10.3390/nu13061848
  90. Diabetic Kinome Inhibitors-A New Opportunity for β-Cells Restoration vol.22, pp.16, 2010, https://doi.org/10.3390/ijms22169083
  91. Pharmaceutical Drugs and Natural Therapeutic Products for the Treatment of Type 2 Diabetes Mellitus vol.14, pp.8, 2010, https://doi.org/10.3390/ph14080806
  92. Looking into the possibilities of cure of the type 2 diabetes mellitus by nanoparticle-based RNAi and CRISPR-Cas9 system: A review vol.66, pp.None, 2010, https://doi.org/10.1016/j.jddst.2021.102830
  93. Pathways in Skeletal Muscle: Protein Signaling and Insulin Sensitivity after Exercise Training and Weight Loss Interventions in Middle-Aged and Older Adults vol.10, pp.12, 2010, https://doi.org/10.3390/cells10123490