Micro-CT Arthrographic Analysis of Monosodium Iodoacetate-Induced Osteoarthritis in Rat Knees

쥐의 슬관절에 Monosodium Iodoacetate로 유발한 골관절염의 Micro-CT 관절조영술적 분석

Kwon, Jong-Won;Kang, Heung-Sik;Hong, Sung-Hwan
권종원;강흥식;홍성환

  • Published : 20100000

Abstract

Purpose: To evaluate the arthrographic findings of MIA-induced osteoarthritis in rat knees using the micro-CT arthrography. Materials and Methods: Intra-articular monosodium iodoacetate (MIA) injection-induced arthritis was induced in the right knees of twelve rats; their left knees served as the control group. Eight weeks after MIA injection, micro-CT arthrography was performed on each knee. We measured the thickness of retro-patellar cartilages, the distances of tibio-femoral joint space, subchondral bone plate thickness, tibial epiphyseal height, and transverse patellar diameter. Subchondral trabecular bone indices were measured in the tibial lateral condylar epiphysis. The data were analyzed statistically using a paired t-test. Results: The retro-patellar articular cartilage showed thinning on the right side that had been induced to develop osteoarthritis. The right knees showed a significant reduction in the distance of the tibio-femoral joint space, prominent patellar osteophytes, and the resorption of subchondral bone. Among the subchondral trabecular bone indices, percent bone volume, and trabecular thickness was reduced on the right side. Conclusion: The articular cartilage thickness of MIA-induced arthritis model could be measured using micro-CT arthrography. It was possible to evaluate the osteoarthritic findings including the change in subchondral bone plate thickness, osteophyte formation, and subchondral bone resorption, as well as quantitatively analyze the trabecular bone indices.

목적: 실험용 흰쥐의 슬관절에 monosodium iodoacetate(MIA)를 주입하여 만든 비외상성관절연골연화성 관절염에 대한 micro-CT 관절조영술 소견을 알아보고자 하였다. 대상과 방법: 12마리의 실험용 흰쥐의 우측 슬관절에 MIA 0.5 mg을 주입하여 관절염을 유도하였고, 좌측 관절은 대조군으로 사용하였다. 8주 뒤 양측 슬관절에 micro-CT 관절조영술을 시행하여 횡단면, 시상면 그리고 관상면 영상을 얻었다. 슬개골 연골 두께, 경골-대퇴골 관절 간격, 경골의 연골하 골판 두께, 경골 근위 골단부 높이, 슬개골 가로 길이를 측정하였고, 골극 형성과 연골하골 흡수 여부를 판단하였다. 경골의 외측 골단부 연골하골에서 골소주 지표들을 얻었다. 각각의 결과가 좌우 관절 사이에 통계적으로 유의한 차이가 있는 지 살펴보았다. 결과: 슬개골 연골 두께는 관절염을 유도한 관절에서 두께가 감소하였고, 경골-대퇴골 관절 간격도 유의하게 감소하였다. 슬개골의 골극 형성이 현저하였고, 연골하골의 흡수가 보였다. 골소주 지표에서는 골소주 부피 및 골소주 두께가 감소하였다. 결론: 실험적으로 유발한 관절염 모델에서 micro-CT 관절조영술을 이용하여 관절연골의 두께가 감소한 모양을 확인하여 두께를 직접 측정할 수 있었고, 연골하 골판의 두께 변화, 골극 형성, 연골하골 흡수 등의 관절염 소견들을 관찰하고 골소주 지표를 정량적으로 평가할 수 있었다.

Keywords

References

  1. Felson DT, Lawrence RC, Dieppe PA, Hirsch R, Helmick CG, Jordan JM, et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 2000;133:635-646 https://doi.org/10.1001/archinte.133.4.635
  2. Bendele A, McComb J, Gould T, McAbee T, Sennello G, Chlipala E, et al. Animal models of arthritis: relevance to human disease. Toxicol Pathol 1999;27:134-142 https://doi.org/10.1177/019262339902700125
  3. Guingamp C, Gegout-Pottie P, Philippe L, Terlain B, Netter P, Gillet P. Mono-iodoacetate-induced experimental osteoarthritis: a dose-response study of loss of mobility, morphology, and biochemistry. Arthritis Rheum 1997;40:1670-1679 https://doi.org/10.1002/art.1780400917
  4. Janusz MJ, Hookfin EB, Heitmeyer SA, Woessner JF, Freemont AJ, Hoyland JA, et al. Moderation of iodoacetate-induced experimental osteoarthritis in rats by matrix metalloproteinase inhibitors. Osteoarthritis Cartilage 2001;9:751-760 https://doi.org/10.1053/joca.2001.0472
  5. Guzman RE, Evans MG, Bove S, Morenko B, Kilgore K. Monoiodoacetate- induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: an animal model of osteoarthritis. Toxicol Pathol 2003;31:619-624
  6. Batiste DL, Kirkley A, Laverty S, Thain LM, Spouge AR, Gati JS, et al. High-resolution MRI and micro-CT in an ex vivo rabbit anterior cruciate ligament transection model of osteoarthritis. Osteoarthritis Cartilage 2004;12:614-626 https://doi.org/10.1016/j.joca.2004.03.002
  7. Nagele E, Kuhn V, Vogt H, Link TM, Muller R, Lochmuller EM, et al. Technical considerations for microstructural analysis of human trabecular bone from specimens excised from various skeletal sites. Calcif Tissue Int 2004;75:15-22 https://doi.org/10.1007/s00223-004-0151-8
  8. Roemer FW, Mohr A, Lynch JA, Meta MD, Guermazi A, Genant HK. Micro-CT arthrography: a pilot study for the ex vivo visualization of the rat knee joint. AJR Am J Roentgenol 2005;184:1215-1219 https://doi.org/10.2214/ajr.184.4.01841215
  9. Vande Berg BC, Lecouvet FE, Poilvache P, Jamart J, Materne R, Lengele B, et al. Assessment of knee cartilage in cadavers with dual-detector spiral CT arthrography and MR imaging. Radiology 2002;222:430-436 https://doi.org/10.1148/radiol.2222010597
  10. Bove SE, Calcaterra SL, Brooker RM, Huber CM, Guzman RE, Juneau PL, et al. Weight bearing as a measure of disease progression and efficacy of anti-inflammatory compounds in a model of monosodium iodoacetate-induced osteoarthritis. Osteoarthritis Cartilage 2003;11:821-830 https://doi.org/10.1016/S1063-4584(03)00163-8
  11. van der Kraan PM, Vitters EL, van de Putte LB, van den Berg WB. Development of osteoarthritic lesions in mice by 'metabolic' and 'mechanical' alterations in the knee joints. Am J Pathol 1989;135:1001-1014
  12. Radin EL, Rose RM. Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res 1986:34-40
  13. Grynpas MD, Alpert B, Katz I, Lieberman I, Pritzker KP. Subchondral bone in osteoarthritis. Calcif Tissue Int 1991;49:20-26 https://doi.org/10.1007/BF02555898
  14. Li B, Marshall D, Roe M, Aspden RM. The electron microscope appearance of the subchondral bone plate in the human femoral head in osteoarthritis and osteoporosis. J Anat 1999;195:101-110 https://doi.org/10.1046/j.1469-7580.1999.19510101.x
  15. Day JS, Ding M, van der Linden JC, Hvid I, Sumner DR, Weinans H. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage. J Orthop Res 2001;19:914-918 https://doi.org/10.1016/S0736-0266(01)00012-2
  16. Bobinac D, Spanjol J, Zoricic S, Maric I. Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans. Bone 2003;32:284-290 https://doi.org/10.1016/S8756-3282(02)00982-1
  17. Ding M, Odgaard A, Hvid I. Changes in the three-dimensional microstructure of human tibial cancellous bone in early osteoarthritis. J Bone Joint Surg Br 2003;85:906-912 https://doi.org/10.1302/0301-620X.85B6.12595
  18. Botter SM, van Osch GJ, Waarsing JH, van der Linden JC, Verhaar JA, Pols HA, et al. Cartilage damage pattern in relation to subchondral plate thickness in a collagenase-induced model of osteoarthritis. Osteoarthritis Cartilage 2007;16:506-514
  19. Badger AM, Griswold DE, Kapadia R, Blake S, Swift BA, Hoffman SJ, et al. Disease-modifying activity of SB 242235, a selective inhibitor of p38 mitogen-activated protein kinase, in rat adjuvant-induced arthritis. Arthritis Rheum 2000;43:175-183 https://doi.org/10.1002/1529-0131(200001)43:1<175::AID-ANR22>3.0.CO;2-S
  20. Kamibayashi L, Wyss UP, Cooke TD, Zee B. Trabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis. Bone 1995;17:27-35 https://doi.org/10.1016/8756-3282(95)00137-3
  21. Patel V, Issever AS, Burghardt A, Laib A, Ries M, Majumdar S. MicroCT evaluation of normal and osteoarthritic bone structure in human knee specimens. J Orthop Res 2003;21:6-13 https://doi.org/10.1016/S0736-0266(02)00093-1