DOI QR코드

DOI QR Code

Properties of $CuIn_xGa_{1-x}Se_2$ thin films grown from electrodeposited precursors with different levels of selenium content

Kang, Feng;Ao, Jianping;Sun, Guozhong;He, Qing;Sun, Yun

  • Published : 20100000

Abstract

In this paper, polycrystalline $CuIn_xGa_{1-x}Se_2$ (CIGS) thin film absorbers were prepared by selenizing electrodeposited (ED) precursors with two different levels of selenium content: rich in selenium and poor in selenium. Comparing the results obtained by X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM) and illuminated current–oltage (J-V), it was found that absorber layers processed from Se-poor ED precursors shows better crystalline quality and increased gallium incorporation, which thus improved cell performance, compared to the layers grown using Se-rich ED precursors. The best cell fabricated from Se-poor ED precursor shows a conversion efficiency of 1.63% at AM1.5 global light.

Keywords

References

  1. J.E. Jaffe, A. Zunger, Phys. Rev. B 29 (1984) 1882 https://doi.org/10.1103/PhysRevB.29.1882
  2. I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi, Prog. Photovolt. Res. Appl. 16 (2008) 235 https://doi.org/10.1002/pip.822
  3. D. Lincot, Thin Sold Films 487 (2005) 40 https://doi.org/10.1016/j.tsf.2005.01.032
  4. I.M. Dharmadasa, N.B. Chaure, G.J. Tolan, A.P. Samantilleke, J. Electrochem. Soc. 154 (6) (2007) H466 https://doi.org/10.1149/1.2718401
  5. T. Delsol, M.C. Simmonds, I.M. Dharmadasa, Sol. Energy Mater. Sol. Cells 77 (2003) 331 https://doi.org/10.1016/S0927-0248(02)00352-5
  6. A. Kampman, J. Rechid, A. Raitzig, S. Wulff, M. Mihhailova, R. Thyen, K. Kalberlah, Mater. Res. Soc. Symp. Proc. 763 (2003) 323
  7. R. Friedfeld, R.P. Raffaelle, J.G. Mantovani, Sol. Energy Mater. Sol. Cells 58 (1999) 375 https://doi.org/10.1016/S0927-0248(99)00010-0
  8. R.N. Bhattacharya, J.F. Hiltner, W. Batchelor, M.A. Contreras, R.N. Noufi, J.R. Sites, Thin Solid Films 361 (2000) 396 https://doi.org/10.1016/S0040-6090(99)00809-3
  9. M.E. Calixto, K.D. Dobson, B.E. McCandless, R.W. Birkmire, J. Electrochem. Soc. 153 (6) (2006) G521 https://doi.org/10.1149/1.2186764
  10. A.M. Hermann, C. Gonzalez, P.A. Ramakrishnan, D. Balzar, N. Popa, P. Rice, C.H. Marshall, J.N. Hilfiker, T. Tiwald, P.J. Sebastian, M.E. Calixto, R.N. Bhattachary, Sol. Energy Mater. Sol. Cells 70 (2001) 345 https://doi.org/10.1016/S0927-0248(01)00076-9
  11. S. Taunier, J. Sicx-Kurdi, P.P. Grand, A. Chomont, O. Ramdani, L. Parissi, P. Panheleux, N. Naghavi, C. Hubert, M. Ben-Farah, J.P. Fauvarque, J. Connolly, O. Roussel, P. Mogensen, E. Mahe, J.F. Guillemoles, D. Lincot, O. Kerrec, Thin Solid Films 480 (2005) 526 https://doi.org/10.1016/j.tsf.2004.11.200
  12. S. Jost, F. Hergert, R. Hock, J. Schulze, A. Kirbs, T. VoX, M. Purwins, Sol. Energy Mater. Sol. Cells 91 (2007) 1669 https://doi.org/10.1016/j.solmat.2007.05.016
  13. S. Jost, F. Hergert, R. Hock, J. Schulze, A. Kirbs, T. VoX, M. Purwins, M. Schmid, Sol. Energy Mater. Sol. Cells 91 (2007) 636 https://doi.org/10.1016/j.solmat.2006.12.012
  14. L. Vegard, Z. Phys. 5 (1921) 17 https://doi.org/10.1007/BF01349680

Cited by

  1. Progress in Polycrystalline Thin-Film Cu(In,Ga)Se2Solar Cells vol.2010, pp.None, 2010, https://doi.org/10.1155/2010/468147
  2. CIGS 박막의 전착에 관한 연구 vol.13, pp.2, 2010, https://doi.org/10.5229/jkes.2010.13.2.089
  3. CIGS Thin Film Solar Cells by Electrodeposition vol.14, pp.2, 2010, https://doi.org/10.5229/jkes.2011.14.2.061
  4. Progress in electrodeposited absorber layer for CuIn(1-x)GaxSe2 (CIGS) solar cells vol.85, pp.11, 2011, https://doi.org/10.1016/j.solener.2011.08.003
  5. Effect of electrodeposition potential on composition and morphology of CIGS absorber thin film vol.36, pp.4, 2010, https://doi.org/10.1007/s12034-013-0497-5
  6. Diffusion Coefficients of Selenium and Gallium during the Cu(In1-xGax)Se2 Thin Films Preparation Process vol.815, pp.None, 2010, https://doi.org/10.4028/www.scientific.net/amr.815.448
  7. Aerosol Deposition 법을 이용한 CIGS 태양전지의 광흡수층 형성 vol.26, pp.12, 2010, https://doi.org/10.4313/jkem.2013.26.12.909
  8. Improving the characteristics of CdS and CIAS films and the performances of CIAS solar cells by electrodeposition Cu-Se/CIAS binary structure precursors on FTO substrate vol.25, pp.9, 2010, https://doi.org/10.1007/s10854-014-2106-9
  9. Influence of copper concentration in solutions on the growth mechanism and performance of electrodeposited Cu(In,Al)Se2 solar cells vol.128, pp.None, 2010, https://doi.org/10.1016/j.solmat.2014.05.007
  10. Effects of Substrate Temperature on the Properties of Cu(In,Ga)Se2 Thin Films Prepared by Sputtering from a Quaternary Target vol.1061, pp.None, 2010, https://doi.org/10.4028/www.scientific.net/amr.1061-1062.209
  11. Electrophoretic Deposition of CuIn1–xGaxSe2 Thin Films Using Solvothermal Synthesized Nanoparticles for Solar Cell Application vol.119, pp.40, 2010, https://doi.org/10.1021/acs.jpcc.5b07300
  12. Influence of process parameters on the properties of pulsed laser deposited CuIn0.7Ga0.3Se2 thin films vol.174, pp.None, 2010, https://doi.org/10.1016/j.solener.2018.09.027
  13. Cu(In,Al)Se2Photovoltaic Thin Film Solar Cell from Electrodeposited Stacked Metallic Layers vol.9, pp.3, 2010, https://doi.org/10.1149/2162-8777/ab736d
  14. Mass Transfer Study on Improved Chemistry for Electrodeposition of Copper Indium Gallium Selenide (CIGS) Compound for Photovoltaics Applications vol.11, pp.5, 2021, https://doi.org/10.3390/nano11051222