DOI QR코드

DOI QR Code

Self assembled $V_2O_5$ nanorods for gas sensors

Dhayal Raj, A.;Pazhanivel, T.;Suresh Kumar, P.;Mangalaraj, D.;Nataraj, D.;Ponpandian, N.

  • Published : 20100000

Abstract

Hollow spheres of vanadium pentoxide made up of self assembled nanorods have been prepared successfully by solvothermal method. The calcinated samples of $V_2O_5$ nanorods exhibit orthorhombic structure as determined through XRD analysis. The nanorods are found to self assemble into hollow sphere like structures which can be clearly seen in SEM images. The diameter of the hollow spheres were around 2–3 $\mu{m}$, while the nanorods forming the micro spheres were with diameters in the range of 100–200 nm and are of few hundreds of nanometers in length. The change in the resistance of the $V_2O_5$ nanorod sensing element with respect to the test gas concentration was measured by noting down the resistance at each concentration for various time intervals. Sensitivity of the material linearly increased with different concentration of ethanol and ammonia. It is clearly seen that the $V_2O_5$ nanorods have more sensing response for ethanol when compared to that of ammonia.

Keywords

References

  1. Mohd Azri Ab Rani, Nilofar Asim, Nor Aziah Lazim, Marzieh Badiei, Mohd Ambar Yarmo, Ozonolysis of oleic acid over a nano vanadium pentoxide ($V_2O_5$) catalyst, Eur. J. Sci. Res. 24 (2008) 428-432 (ISSN 1450-216X)
  2. C.V. Ramana, O.M. Hussain, N.B. Srinivasalu, C. Julien, M. Balkanski, Physical investigations on electron-beam evaporated vanadium pentoxide films, Mater. Sci. Eng. B 52 (1998) 32-39 https://doi.org/10.1016/S0921-5107(97)00273-0
  3. Y. Fujita, K. Miyazaki, C. Tatsuyama, On the electrochromism of evaporated $V_2O_5$ films on the electrochromism of evaporated $V_2O_5$Films, Jpn. J. Appl. Phys. 24 (1985) 1082-1086 https://doi.org/10.1143/JJAP.24.1082
  4. Byung Hoon Kim, Ansoon Kim, Soon-Young Oh, Sung-Soo Bae, Yong Ju Yun, Han Young Yu, Energy gap modulation in $V_2O_5$ nanowires by gas adsorption, Appl. Phys. Lett. 93 (2008) 233101-233103 https://doi.org/10.1063/1.3044403
  5. Isabelle Raible, Marko Burghard, Ulrich Schlecht, Akio Yasuda, Tobias Vossmeyer, $V_2O_5$ nanofibres: novel gas sensors with extremely high sensitivity and selectivity to amines, Actuat. B 106 (2005) 730-735 https://doi.org/10.1016/j.snb.2004.09.024
  6. A.Z. Moshfegh, A. Ignatiev, Formation and characterization of thin film vanadium oxides: Auger electron spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, and optical reflectance studies, Thin Solid Films 198 (1991) 251-268 https://doi.org/10.1016/0040-6090(91)90344-W
  7. L. Ottaviano, A. Pennisi, F. Simone, A.M. Salvi, RF sputtered electrochromic $V_2O_5$ films, Opt. Mater. 27 (2004) 307-313 https://doi.org/10.1016/j.optmat.2004.04.001
  8. U. Schlecht, I. Besnard, A. Yasuda, T. Vossmeyer, M. Burghard, in: H. Kuzmany, J. Fink, M. Mehring, S. Roth (Eds.), Molecular Nanostructures: XVII Int'l. Winterschool/Euroconference on Electronic Properties of Novel Materials, vol. CP685, American Institute of Physics, Melville, NY, 2003, p. 491
  9. J. Muster, G.T. Kim, V. Krstic, J.G. Park, Y.W. Park, S. Roth, M. Burghard, Electrical transport through individual vanadium pentoxide nanowires, Adv. Mater. 12 (2000) 420-424 https://doi.org/10.1002/(SICI)1521-4095(200003)12:6<420::AID-ADMA420>3.0.CO;2-7
  10. G.T. Kim, J. Muster, V. Krstic, J.G. Park, Y.W. Park, S. Roth, M. Burghard, Fieldeffect transistor made of individual $V_2O_5$ nanofibers, Appl. Phys. Lett. 76 (2000) 1875-1877 https://doi.org/10.1063/1.126197
  11. V. Lavayen, C. O'Dwyer, M.A. Santa Ana, S.B. Newcomb, E. Benavente, G. Gonzalez, C.M. Sotomayor Torres, Comparative structural–vibrational study of nano-urchin and nanorods of vanadium oxide, Phys. Solid State (b) 243 (2006) 3285-3289 https://doi.org/10.1002/pssb.200669107
  12. C. O'Dwyer, V. Lavayen, S.B. Newcomb, E. Benavente, M.A. Santa Ana, G. Gonzalez, C.M. Sotomayor Torres, Atomic layer structure of vanadium oxide nanotubes grown on nanourchin structures, Electrochem. Solid State Lett. 10 (2007) A111-A114 https://doi.org/10.1149/1.2436645
  13. G.S. Zakharova, V.L. Volkov, Ch. Taschner, I. Hellmann, A. Leonhardt, R. Klingeler, B. Buchner, Synthesis and characterization of $V_3O_7.H_2O $nanobelts, Solid State Commun. 149 (2009) 814-817 https://doi.org/10.1016/j.ssc.2009.02.001
  14. L. Rey, L.A. Gambam, H.J. Thomas, Oxygen chemisorption on $V_2O_5$: isotherms and isobars of adsorption, J. Catal. 87 (1984) 520-523 https://doi.org/10.1016/0021-9517(84)90213-6
  15. R. Rella, P. Siciliano, A. Cricenti, R. Generosi, M. Girasole, L. Vanzetti, M. Anderle, C. Coluzza, A study of physical properties and gas-surface interaction of vanadium oxide thin films, Thin Solid Films 349 (1999) 254-259 https://doi.org/10.1016/S0040-6090(99)00142-X
  16. Sorapong Pavasupree, Yoshikazu Suzuki, Athapol Kitiyanan, Sommai Pivsa-Art, Susumu Yoshikawa, Synthesis and characterization of vanadium oxides nanorods, J. Solid State Chem. 178 (2005) 2152-2158 https://doi.org/10.1016/j.jssc.2005.03.034
  17. Ch.V. Subba Reddy, Kyung Park, Sun Mho, In-Hyeong Yeo, Su-Moon Park, Simple preparation of $V_2O_5$ nanostructures and their characterization, Bull. Kor. Chem. Soc. 29 (2008) 2061-2064 https://doi.org/10.5012/bkcs.2008.29.10.2061
  18. Ewerton V. Aguiar, Lidia O.O. Costa, Marco A. Fraga, Impregnating ionic Pt species on vanadium oxide nanotubes, Catal. Today 208 (2009) 207-210 https://doi.org/10.1016/j.cattod.2008.09.030
  19. Wen Chen, Liqiang Mai, Junfeng Peng, Qing Xu, Quanyao Zhu, Raman spectroscopic study of vanadium oxide nanotubes, J. Solid State Chem. 177 (2004) 377-379 https://doi.org/10.1016/S0022-4596(03)00416-X
  20. Carlo Resini, Tania Montanari, Guido Busca, Jih-Mirn Jehng, Israel E. Wachs, Comparison of alcohol and alkane oxidative dehydrogenation reactions over supported vanadium oxide catalysts: in situ infrared, Raman and UV-vis spectroscopic studies of surface alkoxide intermediates and of their surface chemistry, Catal. Today 99 (2005) 105-114 https://doi.org/10.1016/j.cattod.2004.09.029
  21. Dong Hun Shin, Chan Uk Bang, Yong Cheol Hong, Han Sup Uhm, Preparation of vanadium pentoxide powders by microwave plasma-torch at atmospheric pressure, Mater. Chem. Phys. 99 (2006) 269-275 https://doi.org/10.1016/j.matchemphys.2005.10.026
  22. J.C. Valmalette, J.R. Gavarri, High efficiency thermochromic VO2 (R) resulting from the irreversible transformation of $VO_2$ (B), Mater. Sci. Eng. B 54 (1998) 168-173 https://doi.org/10.1016/S0921-5107(98)00148-2
  23. J.R. Sohn, I.J. Doh, Y.I. Pae, Spectroscopic study of V2O5 supported on zirconia and modified with $WO_3$, Langmuir 18 (2002) 6280-6288 https://doi.org/10.1021/la020223y
  24. E.M. Guerra, G.R. Silva, M. Mulato, Extended gate field effect transistor using $V_2O_5$ xerogel sensing membrane by sol-gel method, Solid State Sci. 11 (2009) 456-460 https://doi.org/10.1016/j.solidstatesciences.2008.07.014
  25. E.M. Guerra, K.J. Ciuffi, H.P. Oliveira, $V_2O_5$ xerogel-poly(ethylene oxide) hybrid material: synthesis, characterization, and electrochemical properties, J. Solid State Chem. 179 (2006) 3814-3823 https://doi.org/10.1016/j.jssc.2006.08.018
  26. M.V. Ganduglia Pirovano, J. Sauer, Stability of reduced $V_2O_5$ (0 0 1) surfaces, Phys. Rev. B 70 (2004) 045422 https://doi.org/10.1103/PhysRevB.70.045422

Cited by

  1. Fabrication, Optoelectronic and Photocatalytic Properties of Some Composite Oxide Nanostructures vol.11, pp.1, 2010, https://doi.org/10.4313/teem.2010.11.1.001
  2. Transport Properties of Single Vanadium Oxide Nanowire vol.22, pp.None, 2011, https://doi.org/10.1016/j.phpro.2011.11.004
  3. Nonvolatile gating effects on radicals-containing vanadium oxide nanowires by gas molecule absorption and diffusion vol.22, pp.11, 2010, https://doi.org/10.1088/0957-4484/22/11/115501
  4. Electrical characterization and Raman spectroscopy of individual vanadium pentoxide nanowire vol.13, pp.10, 2010, https://doi.org/10.1007/s11051-011-0471-3
  5. Micro‐Raman and photoluminescence analysis of composite vanadium oxide/poly‐vinyl acetate fibres synthesised by electro‐spinning vol.43, pp.6, 2010, https://doi.org/10.1002/jrs.3089
  6. Highly sensitive ammonia resistive sensor based on electrospun V2O5 fibers vol.163, pp.1, 2010, https://doi.org/10.1016/j.snb.2012.01.007
  7. Continuous tubular nanofibers of vanadium pentoxide by electrospinning for energy storage devices vol.14, pp.11, 2010, https://doi.org/10.1007/s11051-012-1201-1
  8. Cadmium oxide nanoplatelets: synthesis, characterization and their electrochemical sensing property of catechol vol.10, pp.4, 2010, https://doi.org/10.1007/s13738-012-0211-3
  9. Sensitivity Studies on Vacuum Deposited V2O5 Thin Films vol.678, pp.None, 2010, https://doi.org/10.4028/www.scientific.net/amr.678.42
  10. Single-layered V2O5 a promising cathode material for rechargeable Li and Mg ion batteries: an ab initio study vol.15, pp.22, 2010, https://doi.org/10.1039/c3cp51167g
  11. Porous FeVO4 nanorods: synthesis, characterization, and gas-sensing properties toward volatile organic compounds vol.15, pp.9, 2010, https://doi.org/10.1007/s11051-013-1948-z
  12. Construction of monodisperse vanadium pentoxide hollow spheres via a facile route and triethylamine sensing property vol.15, pp.46, 2010, https://doi.org/10.1039/c3ce41471j
  13. Electrorheological properties of polyaniline-vanadium oxide nanostructures suspended in silicone oil vol.23, pp.10, 2010, https://doi.org/10.1088/0964-1726/23/10/105012
  14. Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application vol.198, pp.None, 2010, https://doi.org/10.1016/j.molliq.2014.07.030
  15. 비정질과 결정질 V2O5 박막의 온도에 따른 발광특성 vol.24, pp.5, 2014, https://doi.org/10.6111/jkcgct.2014.24.5.202
  16. Optical and dielectric properties of ZrO2-V2O5 nanocomposites by co-precipitation calcination method vol.76, pp.None, 2010, https://doi.org/10.1016/j.spmi.2014.10.021
  17. The Influence of Thermal Conditions on V2O5Nanostructures Prepared by Sol-Gel Method vol.2015, pp.None, 2010, https://doi.org/10.1155/2015/418024
  18. Synthesis and gas sensing behavior of nanostructured V2O5 thin films prepared by spray pyrolysis vol.29, pp.None, 2010, https://doi.org/10.1016/j.mssp.2014.01.008
  19. Rice Husk Templated Mesoporous ZnO Nanostructures for Ethanol Sensing at Room Temperature vol.32, pp.7, 2015, https://doi.org/10.1088/0256-307x/32/7/078101
  20. Three-dimensional micro/nanoscale architectures: fabrication and applications. vol.7, pp.25, 2010, https://doi.org/10.1039/c5nr02048d
  21. High-performance p–n heterojunction photodetectors based on V2O5 nanorods by spray pyrolysis vol.122, pp.9, 2016, https://doi.org/10.1007/s00339-016-0346-7
  22. Preparation of 3D rose-like nickel oxide nanoparticles by electrodeposition method and application in gas sensors vol.27, pp.2, 2016, https://doi.org/10.1007/s10854-015-3959-2
  23. Facile synthesis of vanadia nanoparticles and assessment of antibacterial activity and cytotoxicity vol.31, pp.10, 2010, https://doi.org/10.1080/10667857.2016.1147130
  24. Zeolite Modified Vanadium Pentoxide Sensors for the Selective Detection of Volatile Organic Compounds vol.1, pp.49, 2010, https://doi.org/10.1557/adv.2016.554
  25. EFFECT OF SURFACTANT ON THE MORPHOLOGY OF ZnO/Al:ZnO NANOSTRUCTURES AND THEIR ETHANOL SENSING APPLICATIONS AT ROOM TEMPERATURE vol.23, pp.1, 2010, https://doi.org/10.1142/s0218625x15500948
  26. A Novel Nanohybrid Nanofibrous Adsorbent for Water Purification from Dye Pollutants vol.9, pp.10, 2010, https://doi.org/10.3390/ma9100848
  27. Room temperature CO sensing by polyaniline/Co3O4 nanocomposite vol.133, pp.42, 2010, https://doi.org/10.1002/app.44115
  28. Role of Vanadyl Oxygen in Understanding Metallic Behavior of V2O5(001) Nanorods vol.120, pp.46, 2010, https://doi.org/10.1021/acs.jpcc.6b08452
  29. CuO/V2O5 hybrid nanowires for highly sensitive and selective H2S gas sensor vol.7, pp.78, 2017, https://doi.org/10.1039/c7ra06657k
  30. Volatile Organic Compounds and Dimethyl Methyl Phosphonate (DMMP) Sensing Properties of the Metal Oxide Functionalized QCM Transducers at Room Temperature vol.164, pp.13, 2010, https://doi.org/10.1149/2.1251713jes
  31. Enhanced 1-butylamine gas sensing characteristics of flower-like V2O5 hierarchical architectures vol.699, pp.None, 2010, https://doi.org/10.1016/j.jallcom.2017.01.028
  32. Visible Thermochromism in Vanadium Pentoxide Coatings vol.9, pp.25, 2017, https://doi.org/10.1021/acsami.7b04484
  33. Effects of the precursor concentration and different annealing ambients on the structural, optical, and electrical properties of nanostructured V2O5 thin films deposited by spray pyrolysis technique vol.124, pp.4, 2010, https://doi.org/10.1007/s00339-018-1744-9
  34. Structural, optical and electrical properties of pure and Fe doped V2O5 nanoparticles for junction diode fabrications vol.29, pp.12, 2010, https://doi.org/10.1007/s10854-018-9024-1
  35. Effect of Al doping concentration on the structural, optical, morphological and electrical properties of V2O5 nanostructures vol.42, pp.6, 2010, https://doi.org/10.1039/c7nj03607h
  36. V2O5-Based nanomaterials: synthesis and their applications vol.8, pp.8, 2018, https://doi.org/10.1039/c7ra12523b
  37. Template-free synthesis of vanadium sesquioxide (V2O3) nanosheets and their room-temperature sensing performance vol.6, pp.15, 2018, https://doi.org/10.1039/c7ta10159g
  38. Synthesis and trimethylamine sensing properties of spherical V2O5 hierarchical structures vol.42, pp.17, 2010, https://doi.org/10.1039/c8nj02506a
  39. Investigation on the photophysical properties of tungsten trioxide and tungstate based nanocomposites vol.5, pp.4, 2010, https://doi.org/10.1088/2053-1591/aab735
  40. Effect of Ar, O2, and N2Plasma on the Growth and Composition of Vanadium Oxide Nanostructured Thin Films vol.5, pp.18, 2010, https://doi.org/10.1002/admi.201800612
  41. Light-Enhanced Vanadium Pentoxide (V2O5) Thin Films for Gas Sensor Applications vol.47, pp.12, 2010, https://doi.org/10.1007/s11664-018-6673-z
  42. Influence of Al doping on structural, luminescence and electrochemical properties of V2O5 nanostructures synthesized via non-hydrolytic sol-gel technique vol.6, pp.1, 2019, https://doi.org/10.1088/2053-1591/aae4a0
  43. Self-Assembled Vanadium Oxide Nanoflakes for p-Type Ammonia Sensors at Room Temperature vol.9, pp.3, 2010, https://doi.org/10.3390/nano9030317
  44. General adsorption model for H2S, H2Se, H2Te, NH3, PH3, AsH3 and SbH3 on the V2O5(001) surface includ vol.720, pp.None, 2019, https://doi.org/10.1016/j.cplett.2019.02.013
  45. Metal oxide nanostructures for sensor applications vol.34, pp.4, 2019, https://doi.org/10.1088/1361-6641/ab011e
  46. Ruthenium-decorated vanadium pentoxide for room temperature ammonia sensing vol.9, pp.49, 2019, https://doi.org/10.1039/c9ra04382a
  47. The effect of deposition time on the structural, morphological and H2S gas sensing properties of the V2O5 nanostructures deposited by hydrothermal method vol.30, pp.13, 2019, https://doi.org/10.1007/s10854-019-01580-x
  48. Controllable Synthesis of V 2 O 5 /Mn 3 O 4 Nanoflakes and rGO Nanosheets: To Investigate the Performance of All Solid‐State Asymmetric Supercapacito vol.4, pp.27, 2010, https://doi.org/10.1002/slct.201901915
  49. Polyvinyl Butyral (PVB) Nanofiber/Nanoparticle-Covered Yarns for Antibacterial Textile Surfaces vol.20, pp.17, 2019, https://doi.org/10.3390/ijms20174317
  50. Vanadium oxide nanostructures for chemiresistive gas and vapour sensing: a review on state of the art vol.187, pp.4, 2010, https://doi.org/10.1007/s00604-020-4182-2
  51. The effect of B2O3/CdO substitution on structural, thermal, and optical properties of new black PVB/Cd semiconducting oxide glasses vol.126, pp.7, 2020, https://doi.org/10.1007/s00339-020-03689-x
  52. Sustainable development of vanadium pentoxide carbon composites derived from Hibiscus sabdariffa family for application in supercapacitors vol.4, pp.9, 2010, https://doi.org/10.1039/d0se00779j
  53. Effect of annealing temperature on the structural, optical, magnetic and electrochemical properties of NiO thin films prepared by sol-gel spin coating vol.31, pp.19, 2010, https://doi.org/10.1007/s10854-020-04218-5
  54. A Review of Nanostructured Resistive-Based Vanadium Oxide Gas Sensors vol.8, pp.4, 2020, https://doi.org/10.3390/chemosensors8040105
  55. Band gap tuning possibilities in vanadium oxide vol.43, pp.p5, 2010, https://doi.org/10.1016/j.matpr.2021.01.291
  56. Morphology-driven gas sensing by fabricated fractals: A review vol.12, pp.None, 2010, https://doi.org/10.3762/bjnano.12.88
  57. Synthesis of VO2 thin films from vanadium powder and determination of room-temperature NH3 sensing properties vol.32, pp.10, 2021, https://doi.org/10.1007/s10854-021-05956-w
  58. Significant SRS sensing behavior of hydrothermally silver decorated sandwiched-like vanadia (Ag-V2O5) nanosheets toward ethanol vol.127, pp.6, 2010, https://doi.org/10.1007/s00339-021-04584-9
  59. Thermally Induced Phase Transition and Defect‐Assisted Nonlinear Absorption and Optical Limiting in Nanorod Morphology V2O5 Thin Films vol.23, pp.10, 2010, https://doi.org/10.1002/adem.202100468
  60. Controlled Aerosol-based Synthesis of Vanadium Oxides Nanoparticle for Supercapacitor Applications vol.128, pp.None, 2010, https://doi.org/10.1016/j.jtice.2021.08.030
  61. V2O5 gas sensors: A review vol.332, pp.p2, 2010, https://doi.org/10.1016/j.sna.2021.113179
  62. Comparative study of electrochemically-grown vanadium pentoxide nanostructures synthesized using differential pulse voltammetry, cyclic voltammetry, and chronoamperometry methods as the hole transport vol.900, pp.None, 2010, https://doi.org/10.1016/j.jallcom.2021.163501