DOI QR코드

DOI QR Code

Study of microstructure, impedance and dc electrical properties of $RuO_2$–spinel based screen printed 'green' NTC thermistor

Jagtap, Shweta;Rane, Sunit;Aiyer, Rohini;Gosavi, Suresh;Amalnerkar, Dinesh

  • Published : 20100000

Abstract

The NTC powder materials were prepared chemically using acetates of (Mn–Co–Ni), as precursor materials. The sintering of the powders shows the existence of spinel phases at comparatively low temperature, i.e. 800 ${^{\circ}C}$. 'Green' thick films were prepared by admixing of the spinel powder, $RuO_2$, lead free glass frit and the organic vehicle. Synthesized powders as well as the thermistor films were characterised by FTIR spectroscopy, TG/DTA, XRD and SEM. The electrical parameters like sheet resistance, thermistor constant, temperature co-efficient of resistance of the thick film thermistors are presented. The impedance of the thermistor films was measured and it has been correlated with the theoretical model and its equivalent circuit using the 'Cole–Cole' plots.

Keywords

References

  1. V. Justin, A. Seema, K. Dayas, Ni–Mn–Fe–Cr–O negative temperature coefficient thermistor compositions: correction between processing conditions and electrical characteristics, J. Electroceram. 22 (2009) 428–435 https://doi.org/10.1007/s10832-008-9475-5
  2. A. Veres, J. Noudem, O. Perez, S. Fourrez, G. Bailleul, Manganese based spinellike ceramics with NTC-type thermistor behaviour, Solid State Ionics 178 (2007) 423–428 https://doi.org/10.1016/j.ssi.2007.01.028
  3. K. Park, Improvement in electrical stability by addition of $SiO_2$ in $(Mn_{1.2}Ni_{0.78}Co_{0.87-x}Cu_{0.15}Si_x)O_4$ negative temperature coefficient thermistors, Scr. Mater. 50 (2004) 551–554 https://doi.org/10.1016/j.scriptamat.2003.10.011
  4. K. Park, D. Bang, Electrical properties of Ni–.Mn–Co–(Fe) oxide thick-film NTC thermistors prepared by screen printing, J. Mater. Sci.: Mater. Electron. 4 (2003) 481–487
  5. E. Macklen, Thermistors, Electrochemical Publication Ltd., Scotland, 1987 (pp. 7)
  6. S. Sarkar, M. Sharma, H. Bhaskar, K. Nagpal, Preparation, temperature and composition dependence of some physical and electrical properties of mixtures within the NiO–$Mn_3O_4$ system, J. Mater. Sci. 19 (1984) 545–551 https://doi.org/10.1007/BF02403242
  7. R. Metz, Electrical properties of NTC thermistors made of manganite ceramics of general spinel structure: $Mn_{3-x-x\prime}M_xN_{x\prime}O_4(0\leq+x{\prime}\leq1$; M and N being Ni, Co or Cu). Aging phenomenon study, J. Master. Sci. 35 (2000) 4705-4711 https://doi.org/10.1023/A:1004851022668
  8. R. Metz, J. Caffin, R. Legros, A. Rousset, The preparation, characterization and electrical properties of copper manganite spinels. $Cu_xMn_{3-x}O_4,\;0\leq x \leq 1$, J. Mater. Sci. 24 (1989) 83–87 https://doi.org/10.1007/BF00660936
  9. D. Houievet, J. Bernard, J. Haussonne, High temperature NTC ceramic resistors (ambient–.1000 ${^{\circ}C}$), J. Eur. Ceram. Soc. 24 (2004) 1237–1241 https://doi.org/10.1016/S0955-2219(03)00376-5
  10. K. Park, J. Lee, Mn–Ni–.Co–Cu–Zn–O NTC thermistors with high thermal stability for low resistance applications, Scr. Mater. 57 (2007) 329–332 https://doi.org/10.1016/j.scriptamat.2007.04.026
  11. K. Park, Structural and electrical properties of $FeMg_{0.7}Cr_{0.6}Co_{0.7-x}Al_xO_4\;(0\leq x \leq 0.3)$ thick film NTC thermistors, J. Eur. Ceram. Soc. 26 (2006) 909–914 https://doi.org/10.1016/j.jeurceramsoc.2004.12.021
  12. M. Hrovat, D. Belavic, J. Holc, J. Cilensek, The development of the microstructural and electrical characteristics of NTC thick-film thermistors during firing, J. Mater. Sci. 41 (2006) 5900–5906 https://doi.org/10.1007/s10853-006-0268-4
  13. R. Schmidt, A. Brinkman, Electrical properties of screen-printed $NiMn_2O_{4+\delta}$, J. Eur. Ceram. Soc. 25 (2005) 3027–3031 https://doi.org/10.1016/j.jeurceramsoc.2005.03.180
  14. S. Jagtap, S. Rane, U. Mulik, D. Amalnerkar, Thick film NTC thermistor for wide range of temperature sensing, Microelectron. Int. 24 (2007) 7–13 https://doi.org/10.1108/13565360710745539
  15. H. Arima, Thick film thermistors and RTDs, in: M. Prudenziatati (Ed.), Handbook of Sensors and Actuators, vol. 1, Elsevier, The Netherlands, 1994, pp. 127–150
  16. A. Kshirsagar, S. Rane, U. Mulik, D. Amalnerkar, Microstructure and electrical performance of eco-friendly thick film resistor compositions fired at different firing conditions, Mater. Chem. Phys. 101 (2007) 492–498 https://doi.org/10.1016/j.matchemphys.2006.08.009
  17. S. Rane, M. Prudenziati, B. Morten, Environment friendly perovskite ruthenate based thick film resistors, Mater. Lett. 61 (2007) 595–599 https://doi.org/10.1016/j.matlet.2006.05.015
  18. S. Rane, M. Prudenziati, B. Morten, L. Golonka, A. Dziedzic, Structural and electrical properties of perovskite ruthenate-based lead-free thick film resistors on alumina and LTCC, J. Mater. Sci.: Mater. Electron. 16 (2005) 687–691 https://doi.org/10.1007/s10854-005-3747-5
  19. R. Waldron, Infrared spectrum of ferrites, Phys. Rev. 99 (1955) 1727–1735 https://doi.org/10.1103/PhysRev.99.1727
  20. Z. Wang, C. Zhao, P. Yang, A. Winnubst, C. Chen, X-ray diffraction and infrared spectra studies of $Fe_xMn_{2.34-x}Ni_{0.66}O_4\;(0 NTC ceramics, J. Eur. Ceram. Soc. 26 (2006) 2833–2837 https://doi.org/10.1016/j.jeurceramsoc.2005.05.007
  21. S. Jagtap, S. Rane, S. Gosavi, D. Amalnerkar, Preparation, characterization and electrical properties of spinel-type environment friendly thick film NTC thermistors, J. Eur. Ceram. Soc. 28 (2008) 2501–2507 https://doi.org/10.1016/j.jeurceramsoc.2008.03.027
  22. N. Bonanos, B. Steele, E. Butler, Applications of impedance spectroscopy, in: J. Macdonald, E. Barsoukov (Eds.), Impedance Spectroscopy Theory Experimental and Applications, second ed., Wiley Interscience, USA, 2005, pp. 205–223
  23. S. Agarwal, G. Sharma, Humidity sensing properties of (Ba, Sr) $TiO_3$ thin films grown by hydrothermal–electrochemical method, Sensors Actuators B 85 (2002) 205–211 https://doi.org/10.1016/S0925-4005(02)00109-0
  24. C. Song, H. Choi, J. Kim, J. Lee, S. Kim, Y. Yang, J. Kore, Phys. Soc. 46 (2005) 167
  25. H. Bayhan, A. Kavasoglu, Admittance and impedance spectroscopy on Cu (In, Ga) $Se_2$ solar cells, Turk. J. Phys. 27 (2003) 529–535
  26. H. Ye, C. Sun, H. Huang, P. Hing, Dielectric transition of nano structured diamond films, Appl. Phys. Lett. 78 (2001) 1826–1828 https://doi.org/10.1063/1.1342047
  27. J. Maxwell-Garnett, Colours in metal glasses and metal films, Trans. Royal Soc. CCIII (1904) 385–420
  28. A. Brailsford, D. Hohnke, The electrical characterization of ceramic oxides, Solid State Ionics 11 (1983) 133–142 https://doi.org/10.1016/0167-2738(83)90050-4
  29. R. Tomaszek, K. Nitsch, L. Powlowski, Z. Znamirowski, M. Brylak, Impedance spectroscopy of suspension plasma sprayed Titania coating, Surf. Coat. Technol. 201 (2006) 1930–1934 https://doi.org/10.1016/j.surfcoat.2006.04.062
  30. M. Ponce, M. Castro, C. Alsao, Capacitance and resistance measurements of $SnO_2$ thick films, J. Mater. Sci.: Mater. Electron. 20 (2009) 25–32 https://doi.org/10.1007/s10854-008-9590-8
  31. M. Ponce, P. Bueno, J. Verela, M. Castro, C. Alsao, Impedance spectroscopy analysis of $SnO_2$ thick films gas sensors, J. Mater. Sci.: Mater. Electron. 19 (2008) 1169–1175 https://doi.org/10.1007/s10854-007-9517-9
  32. D. Czekaj, A. Czekaj, T. Orkisz, J. Orkisz, G. Smalarz, Impedance spectroscopic studies of sol–gel derived barium strontium titanate thin films, J. Eur. Ceram. Soc. 30 (2010) 465–470 https://doi.org/10.1016/j.jeurceramsoc.2009.06.036
  33. A. Dziedzic, L. Golonka, J. Kozlowski, B. Licznerski, K. Nitsch, Thick film resistive temperature sensors, Measur. Sci. Technol. 8 (1997) 78–85 https://doi.org/10.1088/0957-0233/8/1/011

Cited by

  1. Electron transport properties of some newly synthesized nonsymmetrical bisindolizines in thin films vol.160, pp.23, 2010, https://doi.org/10.1016/j.synthmet.2010.09.039
  2. Structural and electrical properties of NiMgxMn2-xO4 NTC thermistors prepared by using sol-gel derived powders vol.176, pp.7, 2010, https://doi.org/10.1016/j.mseb.2011.01.020
  3. Ag계 도체 및 RuO2계 저항체 페이스트의 특성에 미치는 무연계 글라스 프릿트 조성의 영향 vol.24, pp.3, 2011, https://doi.org/10.4313/jkem.2011.24.3.200
  4. Effects of Mg substitution on microstructure and electrical properties of NiMn2−xMgxO4 NTC ceramics vol.27, pp.6, 2012, https://doi.org/10.1557/jmr.2012.29
  5. Electrical properties of Ba0⋅7Bi0⋅3Fe0⋅9Sn0⋅1O3-BaCo 0 ⋅ 02 II $^{\mathrm{II}}_{0\cdot 02}$ Co 0 ⋅ 04 III $^{\mathrm{III}}_{0\cdot 04}$ Bi0⋅94O3 thick vol.37, pp.2, 2010, https://doi.org/10.1007/s12034-014-0650-9
  6. Microstructures and electrical properties of Sr0.6Bi0.4Fe0.6Sn0.4O3-BaCoII 0.02CoIII 0.04Bi0.94O3 thick-film thermistors with low room-temperature resistivity vol.25, pp.9, 2010, https://doi.org/10.1007/s10854-014-2115-8
  7. Investigation of Multiply Twins in Mn2.02Co0.98O4 Ceramic by Means of Transmission Electron Microscopy vol.99, pp.10, 2010, https://doi.org/10.1111/jace.14373
  8. Impedance analysis and conduction mechanism of Ba doped Mn1.75Ni0.7Co0.5−x Cu0.05O4 NTC thermistors vol.123, pp.9, 2010, https://doi.org/10.1007/s00339-017-1192-y
  9. Impedance analysis and dielectric response of anatase TiO2nanoparticles codoped with Mn and Co ions vol.4, pp.11, 2010, https://doi.org/10.1088/2053-1591/aa99ca
  10. Electric and optical properties of some new functional lower-rim-substituted calixarene derivatives in thin films vol.124, pp.5, 2010, https://doi.org/10.1007/s00339-018-1784-1