DOI QR코드

DOI QR Code

Chlorpromazine activates $p21^{Waf1/Cip1}$ gene transcription via early growth response-1 (Egr-1) in C6 glioma cells

Shin, Soon-Young;Kim, Chang-Gun;Kim, Se-Hyun;Kim, Yong-Sik;Lim, Yoong-Ho;Lee, Young-Han

  • Published : 20100500

Abstract

2-Chloro-10-[3(-dimethylamino)propyl]phenothiazinemonohydrochloride (chlorpromazine) is a phenothiazine derivative used clinically to control psychotic disorders. It also exhibits an anticancer activity. Treatment with chlorpromazine (CPZ) results in cell-cycle arrest at the G2/M phase in rat C6 glioma cells. CPZ reduces the expression of cell cycle-related proteins, such as cyclin D1, cyclin A, and cyclin B1, but causes an increase in the $p21^{Waf1/Cip1}$ level. The molecular mechanism by which CPZ regulates $p21^{Waf1/Cip1}$ expression is unknown. Here, we provide evidence that CPZ activates the $p21^{Waf1/Cip1}$ gene promoter via induction of the transcription factor early growth response-1 (Egr-1) independently of p53 in C6 cells. A point mutation in the Egr-1-binding motif within the $p21^{Waf1/Cip1}$ promoter abrogated promoter inducibility due to CPZ. Forced expression of Egr-1 enhanced $p21^{Waf1/Cip1}$ promoter activity. In contrast, knockdown of endogenous Egr-1 by small interference RNA attenuated CPZ-induced $p21^{Waf1/Cip1}$ promoter activity. A chromatin immunoprecipitation assay demonstrated that Egr-1 binds to the $p21^{Waf1/Cip1}$ gene promoter. Further analysis showed that the ERK and JNK MAP kinases are required for induction of Egr-1 by CPZ. Finally, stable silencing of Egr-1 expression lead to attenuated CPZ-inducible $p21^{Waf1/Cip1}$ expression and inhibited G2/M phase cell-cycle arrest. These results demonstrate that a functional link between ERK and JNK MAP kinase pathways and $p21^{Waf1/Cip1}$ induction via Egr-1 contributes to CPZ-induced anticancer activity in C6 glioma cells.

Keywords

References

  1. Aicher WK, Sakamoto KM, Hack A, Eibel H. Analysis of functional elements in the human Egr-1 gene promoter. Rheumatol Int 1999;18:207-14 https://doi.org/10.1007/s002960050086
  2. Baron V, Duss S, Rhim J, Mercola D. Antisense to the early growth response-1 gene (Egr-1) inhibits prostate tumor development in TRAMP mice. Ann NY Acad Sci 2003;1002:197-216 https://doi.org/10.1196/annals.1281.024
  3. Baron V, Adamson ED, Calogero A, Ragona G, Mercola D. The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGF$\beta$1, PTEN, p53 and fibronectin: Egr1 is a potential target of gene therapy for prostate cancer. Cancer Gene Ther 2006;13:115-24 https://doi.org/10.1038/sj.cgt.7700896
  4. Baus F, Gire V, Fisher D, Piette J, DulićV. Permanent cell cycle exit in G2 phase after DNA damage in normal human fibroblasts. EMBO J 2003;22:3992-4002 https://doi.org/10.1093/emboj/cdg387
  5. Calogero A, Lombari V, De Gregorio G, Porcellini A, Ucci S, Arcella A, Caruso R, Gagliardi FM, Gulino A, Lanzetta G, Frati L, Mercola D, Ragona G. Inhibition of cell growth by EGR-1 in human primary cultures from malignant glioma. Cancer Cell Int 2004;4:1-12 https://doi.org/10.1186/1475-2867-4-1
  6. Chan TA, Hwang PM, Hermeking H, Kinzler KW, Vogelstein B. Cooperative effects of genes controlling the G2/M checkpoint. Genes Dev 2000;14:1584-8
  7. Charrier-Savournin FB, Chateau MT, Gire V, Sedivy J, Piette J, Dulic V. p21-Mediated nuclear retention of cyclin B1-Cdk1 in response to genotoxic stress. Mol Biol Cell 2004;15:3965-76 https://doi.org/10.1091/mbc.E03-12-0871
  8. Choi BH, Kim CG, Bae YS, Lim Y, Lee YH, Shin SY. p21Waf1/Cip1 expression by curcumin in U-87MG human glioma cells: role of early growth response-1 expression. Cancer Res 2008a;68:1369-77 https://doi.org/10.1158/0008-5472.CAN-07-5222
  9. Choi JH, Yang YR, Lee SK, Kim SH, Kim YH, Cha JY, Oh SW, Ha JR, Ryu SH, Suh PG. Potential Inhibition of PDK1/Akt Signaling by Phenothiazines Suppresses Cancer Cell Proliferation and Survival. Ann NY Acad Sci 2008b;1138:393-403 https://doi.org/10.1196/annals.1414.041
  10. Derogatis LR, Morrow GR, Fetting J, Penman D, Piasetsky S, Schmale AM, Henrichs M, Carnicke CL Jr. The prevalence of psychiatric disorders among cancer patients. JAMA 1983;249:751-7 https://doi.org/10.1001/jama.249.6.751
  11. Eisenberg S, Giehl K, Henis YI, Ehrlich M. Differential interference of chlorpromazine with the membrane interactions of oncogenic K-Ras and its effects on cell growth. J Biol Chem 2008;283:27279-88 https://doi.org/10.1074/jbc.M804589200
  12. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell 1993;75:817-25 https://doi.org/10.1016/0092-8674(93)90500-P
  13. el-Deiry WS, Harper JW, O'Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y, et al. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 1994;54:1169-74
  14. Gartel AL, Tyner AL. Transcriptional regulation of the p21 (WAF1/CIP1) gene. Exp Cell Res 1999;246:280-9 https://doi.org/10.1006/excr.1998.4319
  15. Hamanaka R, Smith MR, O'Connor PM, Maloid S, Mihalic K, Spivak JL, Longo DL, Ferris DK. Polo-like kinase is a cell cycle-regulated kinase activated during mitosis. J Biol Chem 1995;270:21086-91 https://doi.org/10.1074/jbc.270.36.21086
  16. Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 1993;75:805-16 https://doi.org/10.1016/0092-8674(93)90499-G
  17. Kim CG, Choi BH, Son SW, Yi SJ, Shin SY, Lee YH. Tamoxifen-induced activation of p21Waf1/Cip1 gene transcription is mediated by Early Growth Response-1 protein through the JNK and p38 MAP kinase/Elk-1 cascades in MDA-MB-361 breast carcinoma cells. Cell Signal 2007;19:1290-1300 https://doi.org/10.1016/j.cellsig.2007.01.008
  18. Krones-Herzig A, Adamson E, Mercola D. Early growth response 1 protein, an upstream gatekeeper of the p53 tumor suppressor, controls replicative senescence. Proc Natl Acad Sci USA 2003;100:3233-8 https://doi.org/10.1073/pnas.2628034100
  19. Lee MS, Johansen L, Zhang Y, Wilson A, Keegan M, Avery W, Elliott P, Borisy AA, Keith CT. The novel combination of chlorpromazine and pentamidine exerts synergistic antiproliferative effects through dual mitotic action. Cancer Res 2007;67:11359-67 https://doi.org/10.1158/0008-5472.CAN-07-2235
  20. Li YJ, Sanson M, Hoang-Xuan K, Delattre JY, Poisson M, Thomas G, Hamelin R. Incidence of germ-line p53 mutations in patients with gliomas. Int J Cancer 1995;64:383-7 https://doi.org/10.1002/ijc.2910640606
  21. Nordenberg J, Fenig E, Landau M, Weizman R, Weizman A. Effects of psychotropic drugs on cell proliferation and differentiation. Biochem Pharmacol 1999;58:1229-36 https://doi.org/10.1016/S0006-2952(99)00156-2
  22. Noyes R, Jr. Treatment of cancer pain. Psychosom Med 1981;43:57-70
  23. Petrovic I, Kovacevic-Grujicic N, Stevanovic M. Early growth response protein 1 acts as an activator of SOX18 promoter. Exp Mol Med 2010;42:132-42 https://doi.org/10.3858/emm.2010.42.2.015
  24. Ragione FD, Cucciolla V, Criniti V, Indaco S, Borriello A, Zappia V. p21Cip1 Gene Expression Is Modulated by Egr1. J Biol Chem 2003;278:23360-8 https://doi.org/10.1074/jbc.M300771200
  25. Schratt G, Weinhold B, Lundberg AS, Schuck S, Berger J, Schwarz H, Weinberg RA, Ruther U, Nordheim A. Serum response factor is required for immediate-early gene activation yet is dispensable for proliferation of embryonic stem cells. Mol Cell Biol 2001;21:2933-43 https://doi.org/10.1128/MCB.21.8.2933-2943.2001
  26. Shin SY, Kim SY, Kim JH, Min DS, Ko J, Kang UG, Kim YS, Kwon TK, Han MY, Kim YH, Lee YH. Induction of early growth response-1 gene expression by calmodulin antagonist trifluoperazine through the activation of Elk-1 in human fibrosarcoma HT1080 cells. J Biol Chem 2001;276:7797-805 https://doi.org/10.1074/jbc.M009465200
  27. Shin SY, Kim CG, Hong DD, Kim JH, Lee YH. Implication of Egr-1 in trifluoperazine-induced growth inhibition in human U 87 MG glioma cells. Exp Mol Med 2004;36:380-6
  28. Shin SY, Song H, Kim CG, Choi YK, Lee KS, Lee SJ, Lee HJ, Lim Y, Lee YH. Egr-1 Is Necessary for Fibroblast Growth Factor-2-induced Transcriptional Activation of the Glial Cell Line-derived Neurotrophic Factor in Murine Astrocytes. J Biol Chem 2009;284:30583-93 https://doi.org/10.1074/jbc.M109.010678
  29. Snyder SH, Banerjee SP, Yamamura HI, Greenberg D. Drugs, Neurotransmitters, and Schizophrenia. Science 1974;184:1243-53 https://doi.org/10.1126/science.184.4143.1243
  30. Thyss R, Virolle V, Imbert V, Peyron JF, Aberdam D, Virolle T. NF-$\kappa$B/Egr-1/Gadd45 are sequentially activated upon UVB irradiation to mediate epidermal cell death. EMBO J 2005;24:128-37 https://doi.org/10.1038/sj.emboj.7600501
  31. Treisman R. Ternary complex factors: growth factor regulated transcriptional activators. Curr Opin Genet Dev 1994;4:96-101 https://doi.org/10.1016/0959-437X(94)90097-3
  32. Virolle T, Adamson ED, Baron V, Birle D, Mercola D, Mustelin T, de Belle I. The Egr-1 transcription factor directly activates PTEN during irradiation-induced signalling. Nat Cell Biol 2001;3:1124-28 https://doi.org/10.1038/ncb1201-1124
  33. Virolle T, Krones-Herzig A, Baron V, De Gregorio G, Adamson ED, Mercola D. Egr1 promotes growth and survival of prostate cancer cells. Identification of novel Egr1 target genes. J Biol Chem 2003;278:11802-10 https://doi.org/10.1074/jbc.M210279200
  34. Waldman T, Lengauer C, Kinzler KW, Vogelstein B. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 1996;381:713-6 https://doi.org/10.1038/381713a0
  35. Watson DK, Robinson L, Hodge DR, Kola I, Papas TS, Seth A. FLI1 and EWS-FLI1 function as ternary complex factors and ELK1 and SAP1a function as ternary and quaternary complex factors on the Egr1 promoter serum response elements. Oncogene 1997;14:213-21 https://doi.org/10.1038/sj.onc.1200839
  36. Yang SH, Whitmarsh AJ, Davis RJ, Sharrocks AD. Differential targeting of MAP kinases to the ETS-domain transcription factor Elk-1. EMBO J 1998;17:1740-9 https://doi.org/10.1093/emboj/17.6.1740
  37. Yang SH, Sharrocks AD. Convergence of the SUMO and MAP kinase pathways on the ETS-domain transcription factor Elk-1. Biochem Soc Symp 2006;73:121-9
  38. Zarnowska ED, Mozrzymas JW. Differential effects of chlorpromazine on ionotropic glutamate receptors in cultured rat hippocampal neurons. Neurosci Lett 2001;305:53-6 https://doi.org/10.1016/S0304-3940(01)01809-2

Cited by

  1. Gene Expression-Based Chemical Genomics Identifies Potential Therapeutic Drugs in Hepatocellular Carcinoma vol.6, pp.11, 2010, https://doi.org/10.1371/journal.pone.0027186
  2. Estrogen receptor β stimulates Egr-1 transcription via MEK1/Erk/Elk-1 cascade in C6 glioma cells vol.44, pp.7, 2010, https://doi.org/10.5483/bmbrep.2011.44.7.452
  3. 5-Methoxyflavanone induces cell cycle arrest at the G2/M phase, apoptosis and autophagy in HCT116 human colon cancer cells vol.254, pp.3, 2010, https://doi.org/10.1016/j.taap.2011.05.003
  4. Upregulation of recepteur d'origine nantais tyrosine kinase and cell invasiveness via early growth response‐1 in gastric cancer cells vol.113, pp.4, 2012, https://doi.org/10.1002/jcb.23454
  5. 2′‐Hydroxyflavanone induces apoptosis through Egr‐1 involving expression of Bax, p21, and NAG‐1 in colon cancer cells vol.56, pp.5, 2010, https://doi.org/10.1002/mnfr.201100651
  6. 53BP1 suppresses tumor growth and promotes susceptibility to apoptosis of ovarian cancer cells through modulation of the Akt pathway vol.27, pp.4, 2010, https://doi.org/10.3892/or.2012.1641
  7. 3-Hydroxyflavanone Induces Apoptosis in HeLa Cells vol.56, pp.1, 2013, https://doi.org/10.1007/s13765-012-2234-y
  8. The antipsychotic agent chlorpromazine induces autophagic cell death by inhibiting the Akt/mTOR pathway in human U-87MG glioma cells vol.34, pp.9, 2013, https://doi.org/10.1093/carcin/bgt169
  9. Repositioning antipsychotic chlorpromazine for treating colorectal cancer by inhibiting sirtuin 1 vol.6, pp.29, 2010, https://doi.org/10.18632/oncotarget.4768
  10. Theoretical elucidation of the metabolic mechanisms of phenothiazine neuroleptic chlorpromazine catalyzed by cytochrome P450 isoenzyme 1A2 vol.135, pp.9, 2010, https://doi.org/10.1007/s00214-016-1943-4
  11. DT270‐326, a Truncated Diphtheria Toxin, Increases Blood–Tumor Barrier Permeability by Upregulating the Expression of Caveolin‐1 vol.22, pp.6, 2010, https://doi.org/10.1111/cns.12519
  12. Repositioning chlorpromazine for treating chemoresistant glioma through the inhibition of cytochrome c oxidase bearing the COX4-1 regulatory subunit vol.8, pp.23, 2010, https://doi.org/10.18632/oncotarget.17247
  13. Pu-erh Tea Water Extract Mediates Cell Cycle Arrest and Apoptosis in MDA-MB-231 Human Breast Cancer Cells vol.8, pp.None, 2010, https://doi.org/10.3389/fphar.2017.00190
  14. Inhibition of EGR1 inhibits glioma proliferation by targeting CCND1 promoter vol.36, pp.1, 2010, https://doi.org/10.1186/s13046-017-0656-4
  15. Developments in Blood-Brain Barrier Penetrance and Drug Repurposing for Improved Treatment of Glioblastoma vol.8, pp.None, 2018, https://doi.org/10.3389/fonc.2018.00462
  16. Clozapine-dependent inhibition of EGF/neuregulin receptor (ErbB) kinases vol.9, pp.1, 2010, https://doi.org/10.1038/s41398-019-0519-1
  17. New drugs are not enough-drug repositioning in oncology: An update vol.56, pp.3, 2010, https://doi.org/10.3892/ijo.2020.4966
  18. ERα-related chromothripsis enhances concordant gene transcription on chromosome 17q11.1-q24.1 in luminal breast cancer vol.13, pp.1, 2010, https://doi.org/10.1186/s12920-020-0729-7
  19. CRISPR-dCas9-Based Artificial Transcription Factors to Improve Efficacy of Cancer Treatment With Drug Repurposing: Proposal for Future Research vol.10, pp.None, 2021, https://doi.org/10.3389/fonc.2020.604948
  20. Anticancer Properties of the Antipsychotic Drug Chlorpromazine and Its Synergism With Temozolomide in Restraining Human Glioblastoma Proliferation In Vitro vol.11, pp.None, 2010, https://doi.org/10.3389/fonc.2021.635472
  21. Repurposing Antipsychotics for Cancer Treatment vol.9, pp.12, 2010, https://doi.org/10.3390/biomedicines9121785
  22. Drug repositioning: Using psychotropic drugs for the treatment of glioma vol.527, pp.None, 2010, https://doi.org/10.1016/j.canlet.2021.12.014