Insect Disinfestation and Quality Change of 'Fuyu' Persimmon Fruit Influenced by Hot-water Treatment Methods and MAP Storage

열수처리 방식 및 MAP 저장에 따른 '부유' 단감의 품질 변화 및 해충의 사멸

Lee, Yong-Jae;Park, Young-Hoon;Kim, Keun-Ki;Lee, Heung-Sik
이용재;박영훈;김근기;이홍식

  • Published : 20100400

Abstract

This study was performed to establish an effective method of hot-water treatment and modified atmosphere packaging (MAP) storage for disinfestating insects that disturb quarantine and the quality preservation of sweet persimmon fruits during postharvest storage and shipping. Hot-water dipping was treated at 15${^{\circ}C}$ for 10 min., 48${^{\circ}C}$ for 10 min., and 50${^{\circ}C}$ for 5 min., and hot-water brush was treated at 15${^{\circ}C}$ for 20 sec., 60${^{\circ}C}$ for 10 sec., and 60${^{\circ}C}$ for 20 sec. For a simulated shipping condition at 20${^{\circ}C}$, the fruit samples were evaluated 5 days after treatment. For MAP storage, the sample were either packaged individually or in five-fruit units and stored for 60 and 120 days. The insects were investigated immediately after storage, and fruit quality was evaluated after simulated shipping for 3 days at 20${^{\circ}C}$. No fruit disorder by hot-water was observed from the simulated shipping for 5 days at 20${^{\circ}C}$ after hot-water treatment. Higher visual fruit quality was observed from hot-water brushing in comparison to hot-water dipping. Fruit blackening occurred from untreated control and 15${^{\circ}C}$ water treatment, while it was suppressed from hot-water treatment. All (100%) mites, collembolan, and Eriococcus lagerstroemiae, which were observed in our study, were killed by hot-water dipping at 48${^{\circ}C}$ for 10 min., but many of them survived from hot-water brushing. Although a number of insects could be destroyed by MAP storage without hot-water treatment, MAP storage alone was not effective enough to completely remove the insects. In conclusion, insect disinfestation was more effectively achieved by hot-water dipping, while better fruit quality was maintained after hot-water brushing. The best treatment to control insects and at the same time suppress fruit quality deterioration was hot-water dipping at 48${^{\circ}C}$ for 10 min., which can be applied practically in the industry.

열처리 중 세척을 겸할 수 있는 열수처리와 MAP 저장을 이용하여 수확 후 저장 유통 중 단감의 품질유지와 검역에서 문제가 되는 해충사멸에 효과적인 방법과 조건을 찾고자 본 연구를 수행하였다. 열수침지는 15${^{\circ}C}$ 10분, 48${^{\circ}C}$ 10분, 50${^{\circ}C}$ 5분, 열수브러쉬는 15${^{\circ}C}$ 20초, 60${^{\circ}C}$ 10초, 60${^{\circ}C}$ 20초 처리하였고, 처리 후 상온 모의유통은 포장하지 않고 20${^{\circ}C}$ 에서 5일 후 조사하였다. MAP 저장은 5개 포장과 낱개 포장하여 60일과 120일 저장하여, 해충은 출고 즉시 조사하였고 과실 품질은 출고 후 20${^{\circ}C}$에서 3일 상온 모의유통 후 조사하였다. 열수세척 후 20${^{\circ}C}$ 5일간의 상온 모의유통에서 열수에 의한 장해는 발생되지 않았으며, 브러쉬방식이 침지방식에 비해 과실의 외관품질이 높았다. 무처리나 상온수(15${^{\circ}C}$)를 처리한 과실은 두 방식 모두 저장 중 과피흑변이 다소 발생되었으나 열수처리는 과피흑변 발생을 억제시키는 효과가 있었다. 본 연구에서 관찰된 해충은 응애류, 톡토기류, 주머니깍지벌레였는데, 48${^{\circ}C}$ 10분 열수침지 처리에서 이들 해충은 100% 사멸되었으나 브러쉬처리에서는 상당수의 개체가 생존하였다. 열수처리를 하지 않고 MAP 저장만으로 상당수의 해충을 사멸시킬 수는 있었으나 시간이 오래 소요 되고 저장 후 120일에도 사멸되지 않는 해충이 있어 MAP 저장만으로 해충을 완전히 사멸시키는 것은 어려운 것으로 판단되었다. 결론적으로 열수처리방식에 따른 과실의 품질은 침지방식보다 브러쉬방식이 더 우수하였으나 해충사멸 효과는 브러쉬방식보다 침지방식이 더 효과적이었다. 48${^{\circ}C}$ 10분 열수침지 처리는 저장 중 품질변화를 억제하는 것과 동시에 해충을 사멸할 수 있는 효과를 동시에 가지고 있는 것으로 판단되며 현장 적용 가능성이 높은 것으로 생각된다.

Keywords

References

  1. Burmeister, D.M., S. Ball, S. Green, and A.B. Woolf. 1997. Interaction of hot water treatments and controlled atmosphere storage on quality of ‘Fuyu’ persimmons. Postharvest Biol. and Technol. 12:71-81 https://doi.org/10.1016/S0925-5214(97)00029-X
  2. Dentener, P.R., K.V. Bennett, L.E. Hoy, S.E. Lewthwaite, P.J. Lester, J.H. Maindonald, and P.G. Connolly. 1997. Postharvest disinfestation of light brown apple moth and long-tailed mealy bug on persimmons using heat and cold. Postharvest Biol. and Technol. 12:255-264 https://doi.org/10.1016/S0925-5214(97)00051-3
  3. Dentener, P.R., S.M. Alexander, P.J. Lester, R.J. Petry, J.H. Maindonald, and R.M. McDonald. 1996. Hot air treatment for disinfestation of light brown apple moth and long-tailed mealy bug on persimmons. Postharvest Biol. and Technol. 8:143-152 https://doi.org/10.1016/0925-5214(95)00068-2
  4. Dentener, P.R., S.M. Peets and D.B. Birtles. 1992. Modified atmospheres for the postharvest disinfestation of New Zealand persimmons. NZ J. Crop Hortic. Sci. 20:203-208 https://doi.org/10.1080/01140671.1992.10421916
  5. Ferguson, I.B., S. Ben-Yehoshua, E.J. Mitcham, R.E. McDonald, and S. Lurie. 2000. Postharvest heat treatments: Introduction and workshop summary. Postharvest Biol. and Technol. 21:1-6 https://doi.org/10.1016/S0925-5214(00)00160-5
  6. Kang, C.H. and J.G. Park. 2002. Changes in pest density on sweet persimmon during low temperature storage. J. Agriculture & Life Sci. 36:33-38
  7. Korea Rural Economic Institute (KREI). 2008. Agricultural View 2008 (I). Kor. Rural Economic Ins., Seoul. p. 671-678
  8. Lay-Yee, M., S. Ball, S.K. Forbes, and A.B. Woolf. 1997. Hot-water treatment for insect disinfestation and reduction of chilling injury of ‘Fuyu’ persimmon. Postharvest Biol. and Technol. 10:81-87 https://doi.org/10.1016/S0925-5214(97)87277-8
  9. Lee, Y.J. 2001. Browning disorders of ‘Fuyu’ persimmon fruit caused by low oxygen and low temperature in modified atmosphere storage. J. Kor. Soc. Hort. Sci. 42:725-731
  10. Lee, Y.J. 2004. Optimal dimension of PE film bag according to fruit size in MAP storage of ‘Fuyu’ persimmon fruit. J. Food Sci. Technol. 36:733-739
  11. Lee, Y.M., O.C. Kwon, Y.S. Cho, Y.M. Park and Y.J. Lee. 1999. Effects of oxygen and carbon dioxide concentration in PE film bag on blackening and flesh browning disorder during MA storage of ‘Fuyu’ persimmon fruit. J. Kor. Soc. Hort. Sci. 40:585-590
  12. Lee, Y.J., Y.H. Park, J.S. Kang, Y.W. Choi and B.G. Son. 2008. Storability improvement of ‘Fuyu’ persimmon fruit by the combination of hot-water dipping and MAP. Kor. J. Hort. Sci. Technol. 26:34-41
  13. Lester, P.J., P.R. Dentener, R.J. Petry, and S.M. Alexander. 1995. Hot-water immersion for disinfestation of light brown apple moth (Epiphyas postvittana) and long-tailed mealy bug (Pseudococcus longispinus) on persimmons. Postharvest Biol. and Technol. 6:349-356 https://doi.org/10.1016/0925-5214(95)00002-N
  14. Lurie, S. 1998. Postharvest heat treatments. Postharvest Biol. and Technol. 14:257-269 https://doi.org/10.1016/S0925-5214(98)00045-3
  15. Mitcham, E. J., M.M. Attia, W. Biasi. 1997. Tolerance of ‘Fuyu’ persimmon to low oxygen and high carbon dioxide atmospheres for insect disinfestation. Postharvest Biol. and Technol. 10:155-160 https://doi.org/10.1016/S0925-5214(96)01300-2
  16. Park, Y.S. and S.R. Kim. 2002. Effects of prestorage conditioning and hot water dip on fruit quality of non-astringent ‘Fuyu’ persimmons during cold storage. J. Kor. Soc. Hort. Sci. 43:58-63
  17. Paull, R.E. and N.J. Chen. 2000. Heat treatment and fruit ripening. Postharvest Biol. and Technol. 21:21-37 https://doi.org/10.1016/S0925-5214(00)00162-9
  18. Stewart, R.D. 1997. Importation of fresh persimmon fruit, Diospyros kaki from South Korea into the United States: Qualitative, path-way initiated pest risk assessment. APHIS, USDA. p. 19
  19. Woolf, A.B., S. Ball, K.J. Spooner, M. Lay-Yee, I.B. Ferguson, C.B. Watkins, A. Gunson, and S.K. Forbes. 1997. Reduction of chilling injury in the sweet persimmon ‘Fuyu’ during storage by dry air heat treatments. Postharvest Biol. and Technol. 11:155-164 https://doi.org/10.1016/S0925-5214(97)00024-0