DOI QR코드

DOI QR Code

Spry2 does not directly modulate Raf-1 kinase activity in v-Ha-ras-transformed NIH 3T3 fibroblasts

  • Ahn, Jun-Ho (Department of Biology, College of Natural Sciences, University of Incheon) ;
  • Eum, Ki-Hwan (Department of Biology, College of Natural Sciences, University of Incheon) ;
  • Lee, Michael (Department of Biology, College of Natural Sciences, University of Incheon)
  • Published : 2010.03.31

Abstract

Sprouty (Spry) proteins have previously been suggested as negative regulators of the MAPK pathway through interaction with Raf-1. However, the molecular basis of this inhibition has not been elucidated. In this study, we used cells expressing FLAGtagged Raf-1 with point mutations at known phosphorylation sites to reveal that activation of Raf-1 mutants does not correlate with their degree of interaction with Spry2. The association of Raf-1 with Spry2 in intact cells was further corroborated by immunofluorescence colocalization. Additionally, there was no significant change observed in the strength of interaction between Raf-1 mutants and Spry2 after paclitaxel treatment despite differences in the activation levels of these mutants. Thus, our study provides the evidence that Spry2 does not directly regulate Raf-1 kinase activity, but instead acts as a scaffolding protein that assists interactions between Raf-1 kinase and its direct regulators.

Keywords

References

  1. Sasaki, A., Taketomi, T., Kato, R., Saeki, K., Nonami, A., Sasaki, M., Kuriyama, M., Saito, N., Shibuya, M. and Yoshimura, A. (2003) Mammalian Sprouty4 suppresses Rasindependent ERK activation by binding to Raf1. Nat. Cell. Biol. 5, 427-432 https://doi.org/10.1038/ncb978
  2. Yusoff, P., Lao, D. H., Ong, S. H., Wong, E. S. M., Lim, J., Lo, T. L., Leong, F., Fong, C. W. and Guy, G. R. (2002) Sprouty2 inhibits the Ras/MAP Kinase pathway by inhibiting the activation of Raf. J. Biol. Chem. 277, 3195-3201 https://doi.org/10.1074/jbc.M108368200
  3. Lito, P., Mets, B. D., Kleff, S., O'Reilly, S., Maher, V. M. and McCormick, J. J. (2008) Evidence that sprouty 2 is necessary for sarcoma formation by H-Ras oncogenetransformed human fibroblasts. J. Biol. Chem. 283, 2002-2009 https://doi.org/10.1074/jbc.M709046200
  4. Kim, H. J. and Bar-Sagi, D. (2004) Modulation of signalling by Sprouty: a developing story. Nat. Rev. Mol. Cell Biol. 5, 441-450
  5. Mason, J. M., Morrison, D. J., Basson, M. A. and Licht, J. D. (2006) Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol. 16, 45-54 https://doi.org/10.1016/j.tcb.2005.11.004
  6. Kolch, W. (2000) Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem. J. 351, 289-305 https://doi.org/10.1042/0264-6021:3510289
  7. Marshall, M. S. (1995) Ras target proteins in eucaryotic cells. FASEB J. 9, 1311-1318 https://doi.org/10.1096/fasebj.9.13.7557021
  8. Luo, Z., Diaz, B., Marshall, M. S. and Avruch, J. (1997) An intact Raf zinc finger is required for optimal binding to processed Ras and for Ras-dependent Raf activation in situ. Mol. Cell. Biol. 17, 46-53 https://doi.org/10.1128/MCB.17.1.46
  9. Dhillon, A. S. and Kolch, W. (2002) Untying the regulation of the Raf-1 kinase. Arch. Biochem. Biophys. 404, 3-9 https://doi.org/10.1016/S0003-9861(02)00244-8
  10. Diaz, B., Barnard, D., Filson, A., MacDonald, S., King, A. and Marshall, M. (1997) Phosphorylation of Raf-1 serine 338-serine 339 is an essential regulatory event for Ras-dependent activation and biological signaling. Mol. Cell. Biol. 17, 4509-4516 https://doi.org/10.1128/MCB.17.8.4509
  11. Fabian, J. R., Daar, I. O. and Morrison, D. K. (1993) Critical tyrosine residues regulate the enzymatic and biological activity of Raf-1 kinase. Mol. Cell. Biol. 13, 7170-7179 https://doi.org/10.1128/MCB.13.11.7170
  12. Kolch, W., Heidecker, G., Kochs, G., Hummel, R., Vahidi, H., Mischak, H., Finkenzeller, G., Marme, D. and Rapp, U. R. (1993) Protein kinase C alpha activates Raf-1 by direct phosphorylation. Nature 364, 249-252 https://doi.org/10.1038/364249a0
  13. Reich, A., Sapir, A. and Shilo, B. (1999) Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development 126, 4139-4147
  14. Lee, M. (2006) Raf-1 kinase activation is uncoupled from downstream MEK/ERK pathway in cells treated with Src tyrosine kinase inhibitor PP2. Biochem. Biophys. Res. Commun. 350, 450-456 https://doi.org/10.1016/j.bbrc.2006.09.067
  15. Blagosklonny, M. V., Giannakakou, P., El-Deiry, W. S., Kingston, D. G., Higgs, P. I., Neckers, L. and Fojo, T. (1997) Raf-1/bcl-2 phosphorylation: a step from microtubule damage to cell death. Cancer Res. 57, 130-135
  16. Cheung, H. W., Ling, M. T., Tsao, S. W., Wong, Y. C. and Wang, X. (2004) Id-1-induced Raf/MEK pathway activation is essential for its protective role against taxol-induced apoptosis in nasopharyngeal carcinoma cells. Carcinogenesis 25, 881-887 https://doi.org/10.1093/carcin/bgh087
  17. Improta-Brears, T., Ghosh, S. and Bell, R. M. (1999) Mutational analysis of Raf-1 cysteine rich domain: requirement for a cluster of basic aminoacids for interaction with phosphatidylserine. J. Cell Biochem. 198, 171-178 https://doi.org/10.1023/A:1006981411691
  18. Ahn, J. H., Eum, K. H. and Lee, M. (2009) The enhancement of Raf-1 kinase activity by knockdown of Spry2 is associated with high sensitivity to paclitaxel in v-Ha-ras-transformed NIH 3T3 fibroblasts. Mol. Cell. Biochem. 332, 189-197 https://doi.org/10.1007/s11010-009-0191-5
  19. Lee, A. C., Fenster, B. E., Ito, H., Takeda, K., Bae, N. S., Hirai, T., Yu, Z. X., Ferrans, V. J., Howard, B. H. and Finkel, T. (1999) Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 274, 7936-7940 https://doi.org/10.1074/jbc.274.12.7936
  20. Mason, J. M., Morrison, D. J., Bassit, B., Dimri, M., Band, H., Licht, J. D. and Gross, I. (2004) Tyrosine phosphorylation of Sprouty proteins regulates their ability to inhibit growth factor signaling: a dual feedback loop. Mol. Biol. Cell 15, 2176-2188 https://doi.org/10.1091/mbc.E03-07-0503
  21. Lao, D. H., Yusoff, P., Chandramouli, S., Philp, R. J., Fong, C. W., Jackson, R. A., Saw, T. Y., Yu, C. Y. and Guy, G. R. (2007) Direct binding of PP2A to Sprouty2 and phosphorylation changes are a prerequisite for ERK inhibition downstream of fibroblast growth factor receptor stimulation. J. Biol. Chem. 282, 9117-9126 https://doi.org/10.1074/jbc.M607563200
  22. Impagnatiello, M. A., Weitzer, S., Gannon, G., Compagni, A., Cotten, M. and Christofori, G. (2001) Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J. Cell. Biol. 152, 1087-1098 https://doi.org/10.1083/jcb.152.5.1087
  23. Chandramouli, S., Yu, C. Y., Yusoff, P., Lao, D. H., Leong, H. F., Mizuno, K. and Guy, G. R. (2008) Tesk1 interacts with Spry2 to abrogate its inhibition of ERK phosphorylation downstream of receptor tyrosine kinase signaling. J. Biol. Chem. 283, 1679-1691 https://doi.org/10.1074/jbc.M705457200
  24. Li, X., Wheldon, L. and Heath, J. K. (2003) Sprouty: a controversial role in receptor tyrosine kinase signalling pathways. Biochem. Soc. Trans. 31, 1445-1446 https://doi.org/10.1042/BST0311445
  25. Park, Y. P., Choi, S. C., Kim, B. Y., Kim, J. T., Song, E. Y., Kang, S. H., Yoon, D. Y., Paik, S. G., Kim, K. D., Kim, J. W. and Lee, H. G. (2008) Induction of Mac-2BP by nerve growth factor is regulated by the PI3K/Akt/NF-kB-dependent pathway in the HEK293 cell line. BMB Rep. 41, 784-789 https://doi.org/10.5483/BMBRep.2008.41.11.784

Cited by

  1. Metabolic engineering of Nicotiana benthamiana for the increased production of taxadiene vol.33, pp.6, 2014, https://doi.org/10.1007/s00299-014-1568-9
  2. Crosstalk between autophagy and apoptosis in the regulation of paclitaxel-induced cell death in v-Ha-ras-transformed fibroblasts vol.348, pp.1-2, 2011, https://doi.org/10.1007/s11010-010-0638-8
  3. Autophagy-Dependent Survival of Mutant B-Raf Melanoma Cells Selected for Resistance to Apoptosis Induced by Inhibitors against Oncogenic B-Raf vol.21, pp.2, 2013, https://doi.org/10.4062/biomolther.2013.012
  4. Production of taxadiene from cultured ginseng roots transformed with taxadiene synthase gene vol.45, pp.10, 2012, https://doi.org/10.5483/BMBRep.2012.45.10.085
  5. Induction of Resistance to BRAF Inhibitor Is Associated with the Inability of Spry2 to Inhibit BRAF-V600E Activity in BRAF Mutant Cells vol.23, pp.4, 2015, https://doi.org/10.4062/biomolther.2015.007