DOI QR코드

DOI QR Code

Mass spectrometry based cellular phosphoinositides profiling and phospholipid analysis: A brief review

Kim, Young-Jun;Shanta, Selina Rahman;Zhou, Li-Hua;Kim, Kwang-Pyo

  • Published : 20100100

Abstract

Phospholipids are key components of cellular membrane and signaling. Among cellular phospholipids, phosphoinositides, phosphorylated derivatives of phosphatidylinositol are important as a participant in essential metabolic processes in animals. However, due to its low abundance in cells and tissues, it is difficult to identify the composition of phosphoinositides. Recent advances in mass spectrometric techniques, combined with established separation methods, have allowed the rapid and sensitive detection and quantification of a variety of lipid species including phosphoinositides. In this mini review, we briefly introduce progress in profiling of cellular phosphoinositides using mass spectrometry. We also summarize current progress of matrices development for the analysis of cellular phospholipids using matrix-assisted laser desorption/ionization mass spectrometry. The phosphoinositides profiling and phospholipids imaging will help us to understand how they function in a biological system and will provide a powerful tool for elucidating the mechanism of diseases such as diabetes, cancer and neurodegenerative diseases. The investigation of cellular phospholipids including phosphoinositides using electrospray ionization mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry will suggest new insights on human diseases, and on clinical application through drug development of lipid related diseases.

Keywords

References

  1. Astigarraga E, Gómez GB, Lombardero L, Gresnedo O, Castaño F, Giralt M T, Ochoa B, Puertas RR, Fernandez JA. Profiling and Imaging of Lipids on Brain and Liver Tissue by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Using 2-Mercaptobenzothiazole as a Matrix. Anal Chem 2008;80;9105-14 https://doi.org/10.1021/ac801662n
  2. Berry GT, Buccafusca R, Greer JJ, Eccleston E. Phosphoinositide deficiency due to inositol depletion is not a mechanism of lithium action in brain. Mol Genet Metab 2004;82:87-92 https://doi.org/10.1016/j.ymgme.2004.02.002
  3. Bouschen W, Spengler B. Artifacts of MALDI sample preparation investigated by high-resolution scanning microprobe matrix-assisted laser desorption/ionization (SMALDI) imaging mass spectrometry. Int J Mass Spectrom 2007; 266;129-37 https://doi.org/10.1016/j.ijms.2007.07.017
  4. Cascante M, Boros LG, Comin-Anduix B, de Atauri P, Centelles JJ, Lee PW. Metabolic control analysis in drug discovery and disease. Nat Biotechnol 2002;20:243-9 https://doi.org/10.1038/nbt0302-243
  5. Chen Y, Allegood J, Liu Y, Wang E, Cachon-Gonzalez B, Cox TM, Merrill AH Jr, Sullards MC. Imaging MALDI mass spectrometry using an oscillating capillary nebulizer matrix coating system and its application to analysis of lipids in brain from a mouse model of Tay-Sachs/Sandhoff disease. Anal Chem 2008;80:2780-8 https://doi.org/10.1021/ac702350g
  6. Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature 2006;443:651-7 https://doi.org/10.1038/nature05185
  7. Estrada R, Yappert MC. Alternative approaches for the detection of various phospholipid classes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 2004a;39:412-22 https://doi.org/10.1002/jms.603
  8. Estrada R, Yappert MC. Regional phospholipid analysis of porcine lens membranes by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 2004b;39:1531-40 https://doi.org/10.1002/jms.759
  9. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989;246:64-71 https://doi.org/10.1126/science.2675315
  10. Fujiwaki T, Yamaguchi S, Tasaka M, Sakura N, Taketomi T. Application of delayed extraction-matrix-assisted laser desorption ionization time-of-flight mass spectrometry for analysis of sphingolipids in pericardial fluid, peritoneal fluid and serum from Gaucher disease patients. J Chromatogr B Analyt Technol Biomed Life Sci 2002;776:115-23 https://doi.org/10.1016/S1570-0232(02)00177-0
  11. Ham BM, Jacob JT, Cole RB. MALDI-TOF MS of phosphorylated lipids in biological fluids using immobilized metal affinity chromatography and a solid ionic crystal matrix. Anal Chem 2005;77:4439-47 https://doi.org/10.1021/ac058000a
  12. Hammond G, Thomas CL, Schiavo G. Nuclear phosphoinositides and their functions. Curr Top Microbiol Immunol 2004;282:177-206 https://doi.org/10.1007/978-3-642-18805-3_7
  13. Han X, Gross RW. Electrospray ionization mass spectros copic analysis of human erythrocyte plasma membrane phospholipids. Proc Natl Acad Sci USA 1994;91: 10635-9 https://doi.org/10.1073/pnas.91.22.10635
  14. Han X, Gross RW. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. 2005;24:367-412 https://doi.org/10.1002/mas.20023
  15. Hayasaka T, Goto-Inoue N, Sugiura Y, Zaima N, Nakanishi H, Ohishi K, Nakanishi S, Naito T, Taguchi R, Setou M. Matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight (MALDI-QIT-TOF)-based imaging mass spectrometry reveals a layered distribution of phospholipid molecular species in the mouse retina. Rapid Commun Mass Spectrom 2008;22:3415-26 https://doi.org/10.1002/rcm.3751
  16. Hernandez LD, Hueffer K, Wenk MR, Galan JE. Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 2004;304:1805-7 https://doi.org/10.1126/science.1098188
  17. Hsu FF, Turk J. Characterization of phosphatidylinositol, phosphatidylinositol-4-phosphate, and phosphatidylinositol-4,5-bisphosphate by electrospray ionization tandem mass spectrometry: a mechanistic study. J Am Soc Mass Spectrom 2000;11:986-99 https://doi.org/10.1016/S1044-0305(00)00172-0
  18. Ishida Y, Nakanishi O, Hirao S, Tsuge S, Urabe J, Sekino T, Nakanishi M, Kimoto T, Ohtani H. Direct analysis of lipids in single zooplankter individuals by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 2003; 75:4514-8 https://doi.org/10.1021/ac030072j
  19. Jackson SN, Wang HY, Woods AS. In situ structural characterization of phosphatidylcholines in brain tissue using MALDI-MS/MS. J Am Soc Mass Spectrom 2005a; 16:2052-6 https://doi.org/10.1016/j.jasms.2005.08.014
  20. Jackson SN, Wang HY, Woods AS, Ugarov M, Egan T, Schultz JA. Direct tissue analysis of phospholipids in rat brain using MALDI-TOFMS and MALDI-ion mobility-TOFMS. J Am Soc Mass Spectrom 2005b;16:133-8 https://doi.org/10.1016/j.jasms.2004.10.002
  21. Jackson SN, Wang HY, Woods AS. In situ structural characterization of glycerophospholipids and sulfatides in brain tissue using MALDI-MS/MS. J Am Soc Mass Spectrom 2007;18:17-26 https://doi.org/10.1016/j.jasms.2006.08.015
  22. Jones JJ, Batoy SM, Wilkins CL, Liyanage R, Lay JO Jr. Ionic liquid matrix-induced metastable decay of peptides and oligonucleotides and stabilization of phospholipids in MALDI FTMS analyses. J Am Soc Mass Spectrom 2005;16:2000-8 https://doi.org/10.1016/j.jasms.2005.08.007
  23. Kim HY, Wang TC, Ma YC. Liquid chromatography/mass spectrometry of phospholipids using electrospray ionization. Anal Chem 1994;66:3977-82 https://doi.org/10.1021/ac00094a020
  24. Li YL, Gross ML, Hsu FF. Ionic-liquid matrices for improved analysis of phospholipids by MALDI-TOF mass spectrometry. J Am Soc Mass Spectrom 2005;16:679-82 https://doi.org/10.1016/j.jasms.2005.01.017
  25. Milne SB, Ivanova PT, DeCamp D, Hsueh RC, Brown HA. A targeted mass spectrometric analysis of phosphatidylinositol phosphate species. J Lipid Res 2005;46:1796-802 https://doi.org/10.1194/jlr.D500010-JLR200
  26. Oresic M, Hanninen VA, Vidal-Puig A. Lipidomics: a new window to biomedical frontiers. Trends Biotechnol 2008;26: 647-52 https://doi.org/10.1016/j.tibtech.2008.09.001
  27. Petkovic M, Schiller J, Muller M, Benard S, Reichl S, Arnold K, Arnhold J. Detection of individual phospholipids in lipid mixtures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: phosphatidylcholine prevents the detection of further species. Anal Biochem 2001;289:202-16 https://doi.org/10.1006/abio.2000.4926
  28. Pitt SC, Chen H. The phosphatidylinositol 3-kinase/akt signaling pathway in medullary thyroid cancer. Surgery 2008;144:721-4 https://doi.org/10.1016/j.surg.2008.06.028
  29. Puolitaival SM, Burnum KE, Cornett DS, Caprioli RM. Solvent-free matrix dry-coating for MALDI imaging of phospholipids. J Am Soc Mass Spectrom 2008;19:882-6 https://doi.org/10.1016/j.jasms.2008.02.013
  30. Roth MG. Phosphoinositides in constitutive membrane traffic. Physiol Rev 2004;84:699-730 https://doi.org/10.1152/physrev.00033.2003
  31. Rujoi M, Estrada R, Yappert MC. In situ MALDI-TOF MS regional analysis of neutral phospholipids in lens tissue. Anal Chem 2004;76:1657-63 https://doi.org/10.1021/ac0349680
  32. Schiller J, Arnhold J, Benard S, Muller M, Reichl S, Arnold K. Lipid analysis by matrix-assisted laser desorption and ionization mass spectrometry: A methodological approach. Anal Biochem 1999;267:46-56 https://doi.org/10.1006/abio.1998.3001
  33. Schwartz SA, Reyzer ML, Caprioli RM. Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom 2003;38:699-708 https://doi.org/10.1002/jms.505
  34. Shimma S, Sugiura Y, Hayasaka T, Hoshikawa Y, Noda T, Setou M. MALDI-based imaging mass spectrometry revealed abnormal distribution of phospholipids in colon cancer liver metastasis. J Chromatogr B Analyt Technol Biomed Life Sci 2007;855:98-103 https://doi.org/10.1016/j.jchromb.2007.02.037
  35. Shimma S, Sugiura Y, Hayasaka T, Zaima N, Matsumoto M, Setou M. Mass imaging and identification of biomolecules with MALDI-QIT-TOF-based system. Anal Chem 2008;80: 878-85 https://doi.org/10.1021/ac071301v
  36. Shui G, Bendt AK, Pethe K, Dick T, Wenk MR. Sensitive profiling of chemically diverse bioactive lipids. J Lipid Res 2007;48:1976-84 https://doi.org/10.1194/jlr.M700060-JLR200
  37. Sutphen R, Xu Y, Wilbanks GD, Fiorica J, Grendys EC Jr, LaPolla JP, Arango H, Hoffman MS, Martino M, Wakeley K, Griffin D, Blanco RW, Cantor AB, Xiao YJ, Krischer JP. Lysophospholipids are potential biomarkers of ovarian cancer. Cancer Epidemiol Biomarkers Prev 2004;13: 1185-91
  38. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2:489-501 https://doi.org/10.1038/nrc839
  39. Wang HY, Jackson SN, Woods AS. Direct MALDI-MS analysis of cardiolipin from rat organs sections. J Am Soc Mass Spectrom 2007;18:567-77 https://doi.org/10.1016/j.jasms.2006.10.023
  40. Watson AD. Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res 2006;47:2101-11 https://doi.org/10.1194/jlr.R600022-JLR200
  41. Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov 2005;4:594-610 https://doi.org/10.1038/nrd1776
  42. Wenk MR, Lucast L, Di Paolo G, Romanelli AJ, Suchy SF, Nussbaum RL, Cline GW, Shulman GI, McMurray W, De Camilli P. Phosphoinositide profiling in complex lipid mixtures using electrospray ionization mass spectrometry. Nat Biotechnol 2003;21:813-7 https://doi.org/10.1038/nbt837
  43. Woods AS, Ugarov M, Jackson SN, Egan T, Wang HY, Murray KK, Schultz JA. IR-MALDI-LDI combined with ion mobility orthogonal time-of-flight mass spectrometry. J Proteome Res 2006;5:1484-7 https://doi.org/10.1021/pr060055l

Cited by

  1. Molecular mass spectrometry imaging in biomedical and life science research vol.134, pp.5, 2010, https://doi.org/10.1007/s00418-010-0753-3
  2. Application of MALDI Tissue Imaging of Drugs and Metabolites: A New Frontier for Molecular Histology vol.19, pp.2, 2010, https://doi.org/10.4062/biomolther.2011.19.2.149
  3. Matrix-assisted laser desorption ionization imaging mass spectrometry in lipidomics vol.401, pp.1, 2010, https://doi.org/10.1007/s00216-011-4696-x
  4. Enhanced Ionization of Phosphatidylcholines during MALDI Mass Spectrometry Using DCTB as Matrix vol.30, pp.9, 2010, https://doi.org/10.1002/cjoc.201200600
  5. Lipidomic approach to identify patterns in phospholipid profiles and define class differences in mammary epithelial and breast cancer cells vol.133, pp.2, 2010, https://doi.org/10.1007/s10549-011-1823-5
  6. Analysis of Phosphatidylinositol 3,4,5-Trisphosphates of PTEN Expression on Mammalian Cells vol.4, pp.3, 2010, https://doi.org/10.5478/msl.2013.4.3.41
  7. Quantitative analysis of phosphoinositides and inositol polyphosphates using an HPLC system vol.142, pp.5, 2010, https://doi.org/10.1254/fpj.142.236
  8. Analysis of the Phospholipid Profile of Metaphase II Mouse Oocytes Undergoing Vitrification vol.9, pp.7, 2010, https://doi.org/10.1371/journal.pone.0102620
  9. Matrix coating assisted by an electric field (MCAEF) for enhanced tissue imaging by MALDI-MS vol.6, pp.1, 2010, https://doi.org/10.1039/c4sc01850h
  10. Phospholipids of tumor extracellular vesicles stratify gefitinib‐resistant nonsmall cell lung cancer cells from gefitinib‐sensitive cells vol.15, pp.4, 2010, https://doi.org/10.1002/pmic.201400243
  11. Complexation of phosphates by 1,3‐bis(3‐(2‐pyridylureido)propyl)‐1,1,3,3‐tetramethyldisiloxane vol.29, pp.23, 2010, https://doi.org/10.1002/rcm.7386
  12. Deciphering the roles of phosphoinositide lipids in phagolysosome biogenesis vol.9, pp.3, 2016, https://doi.org/10.1080/19420889.2016.1174798
  13. Approaches to Study Phosphatases vol.11, pp.11, 2010, https://doi.org/10.1021/acschembio.6b00570
  14. Phospholipids as cancer biomarkers: Mass spectrometry‐based analysis vol.37, pp.2, 2018, https://doi.org/10.1002/mas.21510
  15. Phospholipid-the dynamic structure between living and non-living world; a much obligatory supramolecule for present and future vol.6, pp.1, 2010, https://doi.org/10.3934/molsci.2019.1.1
  16. Current Progress of Lipid Analysis in Metabolic Diseases by Mass Spectrometry Methods vol.26, pp.1, 2010, https://doi.org/10.2174/0929867324666171003121127
  17. Fluorescent Chemical Tools for Tracking Anionic Phospholipids vol.61, pp.3, 2010, https://doi.org/10.1002/ijch.202100003