DOI QR코드

DOI QR Code

Cryogenic Performance Test of LOX Turbopump in Liquid Nitrogen

액체질소를 이용한 산화제펌프의 극저온 성능시험

  • Kim, Jin-Sun (Dept. of Turbopump, Korea Aerospace Research Institute) ;
  • Hong, Soon-Sam (Dept. of Turbopump, Korea Aerospace Research Institute) ;
  • Kim, Dae-Jin (Dept. of Turbopump, Korea Aerospace Research Institute) ;
  • Choi, Chang-Ho (Dept. of Turbopump, Korea Aerospace Research Institute) ;
  • Kim, Jin-Han (Dept. of Turbopump, Korea Aerospace Research Institute)
  • 김진선 (한국항공우주연구원 터보펌프팀) ;
  • 홍순삼 (한국항공우주연구원 터보펌프팀) ;
  • 김대진 (한국항공우주연구원 터보펌프팀) ;
  • 최창호 (한국항공우주연구원 터보펌프팀) ;
  • 김진한 (한국항공우주연구원 터보펌프팀)
  • Published : 2010.04.01

Abstract

Performance tests of a liquid-oxygen pump were carried out using liquid nitrogen (LN2) as a working fluid in a cryogenic turbopump test facility in Korea Aerospace Research Institute (KARI). The tests were performed at 30-55% of the design rotational speed, and the results were compared with those from a water test. The experimental results confirmed the similarity of the hydraulic performance, which allows the prediction of the pump performance at a design rotational speed of 20,000 rpm. The overall cavitation performance of the pump in the cryogenic environment was better than that in the water environment for all ranges of flow rates and rotational speeds. Critical cavitation number at the design flow rate was determined as 0.012 from the cryogenic test, and as 0.024 from the water test. The improved cavitation performance is due to the thermodynamic effect in cryogenic fluids.

액체질소를 작동유체로 한 극저온 시험설비를 이용하여 산화제펌프의 성능시험을 수행하였다. 설계회전수의 30~55%영역에서 시험을 수행하였으며, 그 결과를 작동유체로 물을 이용한 상온수류시험의 결과와 비교/분석하였다. 수력성능에 있어서는 회전수에 대한 상사성을 만족시킴으로써, 설계회전수인 20000rpm에서의 성능예측을 가능하게 했다. 펌프의 극저온 흡입성능에서는 설계유량에서 극저온 임계 캐비테이션 수가 0.012으로 나타났으며, 상온수류시험의 경우는 0.024를 보이면서, 모든 시험회전수와 시험유량영역에서 수류시험의 경우보다 향상된 결과를 보였다. 이러한 향상된 극저온 환경에서의 흡입성능은 극저온 유체에서 펌프의 열역학적인 효과로부터 기인하는 것으로 판단된다.

Keywords

References

  1. Kim, J., Hong, S. S., Jeong, E. H., Choi, C. H. and Jeon, S. M., 2005, "Development Status of a Turbopump for 30-ton Thrust Level of Engine," Proceedings of Korean Society of Propulsion Engineers Fall Conference, Daejeon, Korea, pp. 375-383.
  2. Kim, J., Hong, S. S., Jeong, E. H., Choi, C. H. and Jeon, S. M., 2007, "Development of a Turbopump for a 30 Ton Class Engine," AIAA 2007-5516.
  3. Kang, J. S., Kim, J. S. and Kim, J., 2004, "Development of Cryogenic Pump Test Facility," KFMA Journal, Vol. 7, No. 4, pp. 47-52. https://doi.org/10.5293/KFMA.2004.7.4.047
  4. Kim, J. S., Hong, S. S. and Kim, J., 2005, "Hydraulic Performance Test of a Turbopump Inducer in Liquid Nitrogen," Proceedings of the KFMA Annual Meeting, pp. 348-353.
  5. Hong, S. S., Kim, J. S., Choi, C. H. and Kim, J., 2006, "Effect of Tip Clearance on the Cavitation Performance of a Turbopump Inducer," Journal of Propulsion and Power, Vol. 22, No. 1, pp. 174-179. https://doi.org/10.2514/1.11982
  6. Choi, C. H., Noh, J. G., Kim, D. J., Hong, S. S. and Kim, J., 2006, "Performance Prediction of a Turbopump System," KSAS Journal, Vol. 34, No. 4, pp. 70-75.
  7. Kamijo, K., Hirata, K., 1985, "Performance of Small High Speed Cryogenic Pumps," Journal of Fluids Engineering, Vol. 107, pp. 197-204. https://doi.org/10.1115/1.3242460
  8. Kim, D. J., Hong, S. S., Choi, C. H. and Kim, J., 2006, "The Hydraulic Tests of LOX Pumps for a Liquid Rocket Engine," Proceedings of The 4th National Congress on Fluids Engineering August 23-25, Kyungju, Korea, pp. 523-526.