DOI QR코드

DOI QR Code

Dendritic Cell Activation by Glucan Isolated from Umbilicaria Esculenta

  • Kim, Hyung-Sook (College of Pharmacy and Medical Research Center (CICT), Chungbuk National University) ;
  • Kim, Jee-Youn (College of Pharmacy and Medical Research Center (CICT), Chungbuk National University) ;
  • Lee, Hong-Kyung (College of Pharmacy and Medical Research Center (CICT), Chungbuk National University) ;
  • Kim, Moo-Sung (Macrocare) ;
  • Lee, Sang-Rin (Macrocare) ;
  • Kang, Jong-Soon (Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Hwan-Mook (Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Kyung-Ae (Institute of Natural Sciences, Yong-In University) ;
  • Hong, Jin-Tae (College of Pharmacy and Medical Research Center (CICT), Chungbuk National University) ;
  • Kim, Young-Soo (College of Pharmacy and Medical Research Center (CICT), Chungbuk National University) ;
  • Han, Sang-Bae (College of Pharmacy and Medical Research Center (CICT), Chungbuk National University)
  • Received : 2010.10.22
  • Accepted : 2010.11.08
  • Published : 2010.12.31

Abstract

Background: Lichen-derived glucans have been known to stimulate the functions of immune cells. However, immunostimulatory activity of glucan obtained from edible lichen, Umbilicaria esculenta, has not been reported. Thus we evaluated the phenotype and functional maturation of dendritic cells (DCs) following treatment of extracted glucan (PUE). Methods: The phenotypic and functional maturation of PUE-treated DCs was assessed by flow cytometric analysis and cytokine production, respectively. PUE-treated DCs was also used for mixed leukocyte reaction to evaluate T cell-priming capacity. Finally we detected the activation of MAPK and NF-${\kappa}B$ by immunoblot. Results: Phenotypic maturation of DCs was shown by the elevated expressions of CD40, CD80, CD86, and MHC class I/II molecules. Functional activation of DCs was proved by increased cytokine production of IL-12, IL-$1{\beta}$, TNF-${\alpha}$, and IFN-${\alpha}/{\beta}$, decreased endocytosis, and enhanced proliferation of allogenic T cells. Polymyxin B, specific inhibitor of lipopolysaccharide (LPS), did not affect PUE activity, which suggested that PUE was free of LPS contamination. As a mechanism of action, PUE increased phosphorylation of ERK, JNK, and p38 MAPKs, and enhanced nuclear translocation of NF-${\kappa}B$ p50/p65 in DCs. Conclusion: These results indicate that PUE induced DC maturation via MAPK and NF-${\kappa}B$ signaling pathways.

Keywords

References

  1. Schepetkin IA, Quinn MT: Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int Immunopharmacol 6;317-333, 2006 https://doi.org/10.1016/j.intimp.2005.10.005
  2. Tzianabos AO: Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin Microbiol Rev 13;523-533, 2000 https://doi.org/10.1128/CMR.13.4.523-533.2000
  3. Wasser SP: Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60;258-274, 2002 https://doi.org/10.1007/s00253-002-1076-7
  4. Nakano H, Namatame K, Nemoto H, Motohashi H, Nishiyama K, Kumada K: A multi-institutional prospective study of lentinan in advanced gastric cancer patients with unresectable and recurrent diseases: effect on prolongation of survival and improvement of quality of life. Kanagawa Lentinan Research Group. Hepatogastroenterology 46;2662- 2668, 1999
  5. Okamura K, Suzuki M, Chihara T, Fujiwara A, Fukuda T, Goto S, Ichinohe K, Jimi S, Kasamatsu T, Kawai N, et al: Clinical evaluation of schizophyllan combined with irradiation in patients with cervical cancer. A randomized controlled study. Cancer 58;865-872, 1986 https://doi.org/10.1002/1097-0142(19860815)58:4<865::AID-CNCR2820580411>3.0.CO;2-S
  6. Pang ZJ, Zhou M, Chen Y, Wan J: A protein-bound polysaccharide synergistic with lipopolysaccharide induces nitric oxide release and antioxidant enzyme activities in mouse peritoneal macrophages. Am J Chin Med 26;133- 141, 1998 https://doi.org/10.1142/S0192415X9800018X
  7. Okazaki M, Adachi Y, Ohno N, Yadomae T: Structure-activity relationship of (1-->3)-beta-D-glucans in the induction of cytokine production from macrophages, in vitro. Biol Pharm Bull 18;1320-1327, 1995 https://doi.org/10.1248/bpb.18.1320
  8. Borchers AT, Stern JS, Hackman RM, Keen CL, Gershwin ME: Mushrooms, tumors, and immunity. Proc Soc Exp Biol Med 221;281-293, 1999 https://doi.org/10.1046/j.1525-1373.1999.d01-86.x
  9. Ingolfsdottir K, Jurcic K, Fischer B, Wagner H: Immunologically active polysaccharide from Cetraria islandica. Planta Med 60;527-531, 1994 https://doi.org/10.1055/s-2006-959564
  10. Freysdottir J, Omarsdottir S, Ingolfsdottir K, Vikingsson A, Olafsdottir ES: In vitro and in vivo immunomodulating effects of traditionally prepared extract and purified compounds from Cetraria islandica. Int Immunopharmacol 8; 423-430, 2008 https://doi.org/10.1016/j.intimp.2007.11.007
  11. Olafsdottir ES, Ingolfsdottir K, Barsett H, Paulsen BS, Jurcic K, Wagner H: Immunologically active (1-->3)-(1-->4)-alpha- D-glucan from Cetraria islandica. Phytomedicine 6;33-39, 1999 https://doi.org/10.1016/S0944-7113(99)80032-4
  12. Omarsdottir S, Freysdottir J, Olafsdottir ES: Immunomodulating polysaccharides from the lichen Thamnolia vermicularis var. subuliformis. Phytomedicine 14;179-184, 2007 https://doi.org/10.1016/j.phymed.2006.11.012
  13. Olafsdottir ES, Omarsdottir S, Paulsen BS, Wagner H: Immunologically active O6-branched (1-->3)-beta-glucan from the lichen Thamnolia vermicularis var. subuliformis. Phytomedicine 10;318-324, 2003 https://doi.org/10.1078/094471103322004811
  14. Kim MS, Lee KA: Antithrombotic activity of methanolic extract of Umbilicaria esculenta. J Ethnopharmacol 105;342- 345, 2006 https://doi.org/10.1016/j.jep.2005.11.011
  15. Kim MS, Cho HB: Melanogenesis inhibitory effects of methanolic extracts of Umbilicaria esculenta and Usnea longissima. J Microbiol 45;578-582, 2007
  16. Lee KA, Kim MS: Glucosidase inhibitor from Umbilicaria esculenta. Can J Microbiol 46;1077-1081, 2000 https://doi.org/10.1139/w00-091
  17. Kim HS, Kim JY, Ryu HS, Park HG, Kim YO, Kang JS, Kim HM, Hong JT, Kim Y, Han SB: Induction of dendritic cell maturation by $\beta$-glucan isolated from Sparassis crispa. Int Immunopharmacol 10;1284-1294, 2010 https://doi.org/10.1016/j.intimp.2010.07.012
  18. Kim JY, Kang JS, Kim HM, Ryu HS, Kim HS, Lee HK, Kim YJ, Hong JT, Kim Y, Han SB: Inhibition of bone marrow- derived dendritic cell maturation by glabridin. Int Immunopharmacol 10;1185-1193, 2010 https://doi.org/10.1016/j.intimp.2010.06.025
  19. Kim JY, Yoon YD, Ahn JM, Kang JS, Park SK, Lee K, Song KB, Kim HM, Han SB: Angelan isolated from Angelica gigas Nakai induces dendritic cell maturation through toll-like receptor 4. Int Immunopharmacol 7;78-87, 2007 https://doi.org/10.1016/j.intimp.2006.08.017
  20. Kim HS, Kim JY, Kang JS, Kim HM, Kim YO, Hong IP, Lee MK, Hong JT, Kim Y, Han SB: Cordlan polysaccharide isolated from mushroom Cordyceps militaris induces dendritic cell maturation through toll-like receptor 4 signalings. Food Chem Toxicol 48;1926-1933, 2010 https://doi.org/10.1016/j.fct.2010.04.036
  21. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K: Immunobiology of dendritic cells. Annu Rev Immunol 18;767-811, 2000 https://doi.org/10.1146/annurev.immunol.18.1.767
  22. Bennaceur K, Chapman J, Brikci-Nigassa L, Sanhadji K, Touraine JL, Portoukalian J: Dendritic cells dysfunction in tumour environment. Cancer Lett 272;186-196, 2008 https://doi.org/10.1016/j.canlet.2008.05.017
  23. Bennaceur K, Chapman JA, Touraine JL, Portoukalian J: Immunosuppressive networks in the tumour environment and their effect in dendritic cells. Biochim Biophys Acta 1795;16-24, 2009
  24. Harding FA, McArthur JG, Gross JA, Raulet DH, Allison JP: CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356; 607-609, 1992 https://doi.org/10.1038/356607a0
  25. Gabrilovich DI, Nadaf S, Corak J, Berzofsky JA, Carbone DP: Dendritic cells in antitumor immune responses. II. Dendritic cells grown from bone marrow precursors, but not mature DC from tumor-bearing mice, are effective antigen carriers in the therapy of established tumors. Cell Immunol 170;111-119, 1996 https://doi.org/10.1006/cimm.1996.0140
  26. Kusmartsev S, Gabrilovich DI: Effect of tumor-derived cytokines and growth factors on differentiation and immune suppressive features of myeloid cells in cancer. Cancer Metastasis Rev 25;323-331, 2006 https://doi.org/10.1007/s10555-006-9002-6
  27. Menetrier-Caux C, Montmain G, Dieu MC, Bain C, Favrot MC, Caux C, Blay JY: Inhibition of the differentiation of dendritic cells from CD34(+) progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92;4778-4791, 1998
  28. Nefedova Y, Huang M, Kusmartsev S, Bhattacharya R, Cheng P, Salup R, Jove R, Gabrilovich D: Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 172;464-474, 2004 https://doi.org/10.4049/jimmunol.172.1.464
  29. Rabinovich GA, Gabrilovich D, Sotomayor EM: Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 25;267-296, 2007 https://doi.org/10.1146/annurev.immunol.25.022106.141609
  30. Shurin GV, Shurin MR, Bykovskaia S, Shogan J, Lotze MT, Barksdale EM Jr: Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res 61;363-369, 2001
  31. Kanazawa M, Mori Y, Yoshihara K, Iwadate M, Suzuki S, Endoh Y, Ohki S, Takita K, Sekikawa K, Takenoshita S: Effect of PSK on the maturation of dendritic cells derived from human peripheral blood monocytes. Immunol Lett 91;229-238, 2004 https://doi.org/10.1016/j.imlet.2003.12.007
  32. Kim GY, Han MG, Song YS, Shin BC, Shin YI, Lee HJ, Moon DO, Lee CM, Kwak JY, Bae YS, Lee JD, Park YM: Proteoglycan isolated from Phellinus linteus induces tolllike receptors 2- and 4-mediated maturation of murine dendritic cells via activation of ERK, p38, and NF-kappaB. Biol Pharm Bull 27;1656-1662, 2004 https://doi.org/10.1248/bpb.27.1656
  33. Kim GY, Lee MY, Lee HJ, Moon DO, Lee CM, Jin CY, Choi YH, Jeong YK, Chung KT, Lee JY, Choi IH, Park YM: Effect of water-soluble proteoglycan isolated from Agaricus blazei on the maturation of murine bone marrow-derived dendritic cells. Int Immunopharmacol 5;1523-1532, 2005 https://doi.org/10.1016/j.intimp.2005.02.018
  34. Kim R, Emi M, Tanabe K: Cancer immunosuppression and autoimmune disease: beyond immunosuppressive networks for tumour immunity. Immunology 119;254-264, 2006 https://doi.org/10.1111/j.1365-2567.2006.02430.x
  35. Grewal IS, Flavell RA: The role of CD40 ligand in costimulation and T-cell activation. Immunol Rev 153;85-106, 1996 https://doi.org/10.1111/j.1600-065X.1996.tb00921.x
  36. Gately MK, Renzetti LM, Magram J, Stern AS, Adorini L, Gubler U, Presky DH: The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu Rev Immunol 16;495-521, 1998 https://doi.org/10.1146/annurev.immunol.16.1.495
  37. Iwasaki A: Mucosal dendritic cells. Annu Rev Immunol 25;381-418, 2007 https://doi.org/10.1146/annurev.immunol.25.022106.141634

Cited by

  1. P-28: Effect of Annealing Temperature on Reliability of Solution-Processed Zinc Tin Oxide Thin Film Transistors vol.41, pp.1, 2010, https://doi.org/10.1889/1.3499938
  2. Immunomodulation of Fungal β-Glucan in Host Defense Signaling by Dectin-1 vol.20, pp.5, 2012, https://doi.org/10.4062/biomolther.2012.20.5.433
  3. Lichens: a promising source of antibiotic and anticancer drugs vol.12, pp.1, 2010, https://doi.org/10.1007/s11101-013-9283-7
  4. Extraction and preliminary characterization of polysaccharide fromUmbilicaria esculentacultivated in Huangshan Mountain vol.29, pp.4, 2010, https://doi.org/10.1080/13102818.2015.1022222
  5. Immune Enhancing Activity of β-(1,3)-Glucan Isolated from Genus Agrobacterium in Bone-Marrow Derived Macrophages and Mice Splenocytes vol.44, pp.5, 2010, https://doi.org/10.1142/s0192415x16500567
  6. 자몽씨 추출물을 첨가한 석이버섯주의 저장 중 품질 특성 vol.45, pp.2, 2016, https://doi.org/10.3746/jkfn.2016.45.2.239
  7. The Polysaccharide Extracted from Umbilicaria esculenta Inhibits Proliferation of Melanoma Cells through ROS-Activated Mitochondrial Apoptosis Pathway vol.41, pp.1, 2010, https://doi.org/10.1248/bpb.b17-00562
  8. Hypolipidemic Effects of β-Glucans, Mannans, and Fucoidans: Mechanism of Action and Their Prospects for Clinical Application vol.25, pp.8, 2020, https://doi.org/10.3390/molecules25081819
  9. A comprehensive review on secondary metabolites and health-promoting effects of edible lichen vol.80, pp.None, 2010, https://doi.org/10.1016/j.jff.2020.104283