Mineralogical and Geochemical Characteristics of the Wolgok-Seongok Orebodies in the Gagok Skarn Deposit : Their Genetic Implications

가곡 스카른 광상 월곡-선곡 광체의 광물.지구화학적 특성: 성인적 의미

  • Received : 2010.09.28
  • Accepted : 2010.10.13
  • Published : 2010.10.28

Abstract

The Gagok stratabound skarn deposit is the result of the intrusion of the Cretaceous granitic pluton into the Paleozoic calcareous rocks. The subvolcanic intrusion ranges in composition from quartz monzonite to granite porphyry with I-type, calc-alkaline and weakly peraluminous characteristics. Both endoskarn and exoskarn are developed at the Gagok Zn-(Pb) deposit, with more exoskarn than endoskarn. Geochemical and mineralogical characteristics in the Seongok and Wolgok orebodies can be treated in terms of self-organization. Sphalerites in the Gagok ore can also incorporate minor amounts of Mn, Cd, Cu and In. Trace element concentrations in different orebodies vary because fractionation of a given element into sphalerite is influenced by formation temperature and the amount of sphalerite in the ore. A group of high In/Zn and Cd/Zn ratios in ores, and low Mn/Fe ratios in sphalerites are correlated with proximal processes of a magmatic source. The pattern of minor/trace element variations in ores and sphalcrites can be used for petrogenetic interprctation, e.g., orebody zonation related to crystallization temperature and fluid d sources.

가곡 스카른 광상은 고생대 조선누층군 석회질암을 관입한 백악기 화강암체의 접촉부를 따라 층상으로 교대된 광상으로 구성되어 있다. 관계화성암인 반심성암체는 석영몬조암~화강반암 조성과 함께 I형, 칼크-알카리 계열, 고알루미나질 지화학적 특정을 보이며, 가곡 Zn-Pb 광상에서는 내성스카른과 비하여 외성스카른이 광범위하게 배태되어 있다. 선곡과 월곡 지역의 광체에서 지화학적/광물학적 특성은 관계화성암으로부터 근접성에 의하여 좌우되고 있다. 가곡 광산의 섬아연석에는 Mn, Cd, Cu, In 성분이 미량 함유되어 있고, 정출온도 차이 및 분화과정을 통하여 차별화된 농집 과정이 유도됨으로서 광체에 따라 미량원소의 차이를 보이고 있다. 광석 중 높은 In/Zn비와 Cd/Zn비 그리고 섬아연석 중 낮은 Mn/Zn비는 마그마로부터 공급된 근원물질의 근접성과 밀접한 연관성을 보이고 있다. 따라서, 광석과 섬아연석에 함유된 미량원소의 농집 양상은 정출온도와 광화유체의 근원물질과 관련된 광체의 지화학적/광물학적 차별성을 인지할 수 있는 중요한 지시자로 이용될 수 있다.

Keywords

Acknowledgement

Supported by : 한국에너지기술평가원(KETEP)

References

  1. Barton, P.B. Jr and Skinner, B.J. (1979) Sulfide mineral stabilities. In: Geochemistry of Hydrothermal Ore Deposits (H.L. Barnes, ed.), Wiley-Interscience, New York, p.278-403.
  2. Benedetto, F.D., Bernardini, G.P., Costagliola, P., Plant, D. and Vaughan, D.J. (2005) Compositional zoning in sphalerite crystals. Amer. Min, v.90, p.1384-1392. https://doi.org/10.2138/am.2005.1754
  3. Choi, S.-G. (1993) Compositional variations of sphalerites and their genetic characteristics from gold and/or silver deposits in central Korea. Jour. Korean Inst. Mining Geology, v.26, p.135-144.
  4. Choi, B.K., Choi, S.-G., Seo, J.E., Kim, T.H., Kang, H.S., Lee,S.B., Koo, M.H., Yoo, I.K. and Jung E.H. (2010) Formation and mineral chemistry of a Zn-Pb skarn from the Gageok mine, south Korea. The 20th International Mineralogical Association, IMA2010, Budapest/Hungary, August 21-27, CD-Proceeding. p.231.
  5. Choi, S.-G., Choi, B.K., Ahn, Y.H. and Kim, T.H. (2009) Re-evaluation of genetic environments of zinc-lead deposits to predict hidden skarn orebody. Jour. Econ. Env. Geol. v.42, p.301-314.
  6. Choi, S.-G., Pak, S.J., Lee, P.-K. and Kim, C.S. (2004) An overview of geoenvironmental implications of mineral deposits in Korea. Jour. Econ. Env. Geol. v.37, p.1-19.
  7. Chon, H.T., Shimazaki, H. and Sato, K. (1981) Compositional variation of sphalerites from some hydrothermal metallic ore deposits in the Republic of Korea. Mining Geology, v.31, p.337-343.
  8. Chon, H.T. and Shimazaki. H. (1986) Iron, manganese and cadmium contents of sphalerites and their genetical implications to hydrothermal metallic ore deposits in Korea. Jour. Korean Inst. Mining Geol. v.19, p.139-149.
  9. Ciobanue, C.L. and Cook, N.J. (2000) Intergrowths of bismuth sulphosalts from the Ocna de Fier Fe-skarn deposit, Banat, Southwest Romania. Eur. J. Mineral. v.12, p.899-917. https://doi.org/10.1127/0935-1221/2000/0012-0899
  10. Ciobanue, C.L. and Cook, N.J. (2004) Skarn texture and a case study: the Ocna de Fier-Dognecea orefield, Banat, Romania. Ore Geology Reviews, v.24, p.315-370. https://doi.org/10.1016/j.oregeorev.2003.04.002
  11. Cook, N.J., Ciobanue, C.L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., Saini-Eidukat, B. and Melcher, F. (2009) Trace and minor elements in sphalerite: A LA-ICP-MS study. Geochim. Cosmochim. Acta. v.73, p.4761-4791. https://doi.org/10.1016/j.gca.2009.05.045
  12. Einaudi, M.T., Hedenquist, J.W. and Inan, E.E. (2003) Sulfidation state of fluids in active and extinct hydrothermal systems: Transitions from porphyry to epithermal environments: Econ. Geol., Special Pub., no.10, p.285-313.
  13. Han, K.S. (1972) Geologic Report of the Second Yeonhwa Mine, Kangwon Province. Jour. Korean Inst. Mining Geol. v.5, p.211-220.
  14. Imai, N. and Choi, S.-G. (1984) The first Korean occurrence of roquesite. Mineralogical Journal, v.12, p.162-172. https://doi.org/10.2465/minerj.12.162
  15. Imai, N. and Lee, H.K. (1980) Complex sulphide and sulphosalt ores from the Janggun mine, Republic of Korea. In: Complex Sulphide Ores, Proc. International Conference for Complex Sulphide Ores 1980, Rome, Oct. 5-8, p.248-259.
  16. Kim, K.H., Nakai, N. and Kim, O.J. (1981) A mineralogical study of the skarn minerals from the Shinyemi lead-zinc ore deposits, Korea. Jour. Korean Inst. Mining Geol., v.14, 167-182.
  17. Koh, Y.K., Choi, S.-G., So, C.S., Choi, S.H. and Uchida, E. (1992) Application of arsenopyrite geothermometry and sphalerite geobarometry to the Taebaek Pb-Zn-(-Ag) deposit at Yeonhwa I mine, Republic of Korea. Mineralium Deposita, v.27, p.58-65.
  18. Kubo, T., Nakato, T. and Uchida, E. (1992) An experimental study on partitioning of Zn, Fe, Mn and Cd between sphalerite and aqueous chloride solution. Mining. Geol., v.42, p.301-309.
  19. Meinert, L.D. (1992) Skarns and skarn deposits. Geoscience Canada, v.19, p.145-162.
  20. Meinert, L.D., Dipple, G.M. and Micolescu, S. (2005) World skarn deposits. Econ. Geol., 100th anniversary Volume, p.299-336.
  21. Mizuta, T., Shimazaki, H., Kaneda, H. and Lee, M.S. (1984) Compositional variation of sphalerites from some Au-Ag ore deposits in South Korea. In: Granitic Provinces and Associated Ore Deposits in South Korea (A. Tsusue, ed.), p.127-152.
  22. Pak, S.J., Choi S.-G. and Choi S.H. (2004) Systematic mineralogy and chemistry of gold-silver vein deposits in the Taebaeksan district, Korea: Distal relatives of a porphyry system. Mineralogical Magazine, v.68, p.467-487. https://doi.org/10.1180/0026461046830199
  23. Park, J.-W., Choi S.-G., Ko E.-M. and Chi S.J. (2007) Geochemical characteristics of barren and mineralized intrusives in the Geodo area Taebaeksan Basin, south Korea: Implications for adakite magmatism and Fe-Cu(-Au) mineralization. In: Exploring Our Environment. Proceeding of the 23rd International Applied Geochemistry Symposium, Oviedo/Spain, June 14-19, p.179.
  24. Scott, S.D. and Barnes, H.L. (1971) Sphalerite geothermometry and geobarometry. Econ. Geol., v.66, p.466-474. https://doi.org/10.2113/gsecongeo.66.3.466
  25. Seo, J., Choi, S.-G., Kim, C.S., Park, J.W.. Yoo, I.K. and Kim, N.H. (2007) The skarnification and Fe-Mo Mineralization at lower part of western Shinyemi orebody in Taeback area. Jour. Miner. Soc. Korea, v.20, p.35-46.
  26. Shimazaki H. and Shimizu M. (1984) Compositional variation of sphalerites from skarn deposits in Japan. Jour. Fac. Sci., Univ. Tokyo, Sec., II, v.21, p.1-37.
  27. Shimizu M., Matsubara S., Kyouno Y., Harada A. and Cook N.J. (2007) High-grade Ag-Cu-Sn-In mineralization in the Nishizawa-Ashio area, Tochigi prefecture, central Japan, Geochim. Cosmochim. Acta., v.71 (suppl. 1), A-930.
  28. Yun, S.K. (1979) Structural and compositional characteristics of skarn zinc-lead deposits in the Yeonhwa- Ulchin mining district, southeastern Taebaegsan region, Korea, part II: The Yeonhwa II mine. Jour. Korean Inst. Mining Geol., v.12, p.147-176.
  29. Yun, S. and Einaudi, M.T. (1982) Zinc-lead skarn of the Yeonhwa-Ulchin district, south Korea. Econ. Geol., v.77, p.1013-1032. https://doi.org/10.2113/gsecongeo.77.4.1013