Study on the Variation of Electrical Internal Resistance for Thermoelectric Generator Module with Operating Temperature

운전 온도에 따른 열전발전 모듈의 전기적 내부 저항 변화에 대한 연구

  • Kim, Yun-Ho (Department of Mechanical and Information Engineering, University of Seoul) ;
  • Kim, Myung-Kee (Division of Mechanical Engineering, Hanyang University) ;
  • Kim, Seo-Young (Energy Mechanics Research Center, Korea Institute of Science and Technology) ;
  • Rhee, Gwang-Hoon (Department of Mechanical and Information Engineering, University of Seoul) ;
  • Um, Suk-Kee (Division of Mechanical Engineering, Hanyang University)
  • 김윤호 (서울시립대학교 기계정보공학과) ;
  • 김명기 (한양대학교 기계공학부) ;
  • 김서영 (한국과학기술연구원 에너지메카닉스연구센터) ;
  • 리광훈 (서울시립대학교 기계정보공학과) ;
  • 엄석기 (한양대학교 기계공학부)
  • Published : 2010.01.10

Abstract

An analysis model considered the manufacturing factors and the pellet size has been developed in order to predict the performance characteristics of thermoelectric modules as generators. Since the electrical internal resistance has a significant role in the performance of thermoelectric modules, the variations of electrical internal resistance with operating temperature are experimentally measured. The modified electrical internal resistance calculated from an experimental correlation is applied to the analysis model. To verify the modified analysis model, the output voltage, output current and output power are compared with experimental results for the operating temperature conditions of $T_h=85^{\circ}C$ and ${\Delta}T=40^{\circ}C$. The modified analysis shows a good agreement with the experimental results in terms of the output voltage, current, and power.

Keywords

References

  1. Niu, X., Yu, J., Wang, S., 2009, Experimental study on low-temperature waste heat thermoelectric generator, Journal of Power Sources, Vol. 188, pp. 621-626. https://doi.org/10.1016/j.jpowsour.2008.12.067
  2. O'Brien, R. C., Ambrosi, R. M., Bannister, N. P., Howe, S. D., Atkinson, H. V., 2008, Safe radioisotope thermoelectric generators and heat sources for space applications, Journal of Nuclear Materials, Vol. 377, pp. 506-521. https://doi.org/10.1016/j.jnucmat.2008.04.009
  3. Bass, J. C., Elsner, N. B. and Leavitt, F. A., 1994, Performance of the 1kW thermoelectric generator for diesel engines, Proceedings of the 13th International Conference on Thermoelectrics, pp. 295-298.
  4. Vazaquez, J., Miguel, A., Sanz-Bobi., Rafael, P., Antonio, A., 2002, State of the art of thermoelectric generators based on heat recovered from the exhaust gases of automobiles, Proceedings of 7th European Workshop on Thermoelectrics, Pamplona, Spain.
  5. LaGrandeur J., 2006, Automotive waste heat conversion to electric power using skutterudites, TAGS, PbTe and $Bi_2Te_3,$ 2006 DEER Conference, Detroit MI.
  6. Wang, Z., Leonov, V., Fiorini, P., Van Hoof, C., 2009, Realization of a wearable miniaturized thermoelectric generator for human body applications, Sensors and Actuators A: Physical, In Press.
  7. Qiu, K., Hayden, A. C. S., 2008, Develops of thermoelectric self-powered residential heating system, Journal of Power Sources, Vol. 180, pp. 884-889. https://doi.org/10.1016/j.jpowsour.2008.02.073
  8. Champier, D., Bedecarrats, J. P., Rivaletto, M., Strub, F., 2009, Thermoelectric power generation from biomass cook stoves, Energy, In Press.
  9. Nuwayhid, R. Y., Shihadeh, A., Ghaddar, B., 2005, Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling, Energy Convertsion and Management, Vol. 46, pp. 1631-1643. https://doi.org/10.1016/j.enconman.2004.07.006
  10. Rowe, D. M., Min, G., 1998, Evaluation of thermoelectric modules for power generation, Journal of Power Souces, Vol. 73, pp. 193-198. https://doi.org/10.1016/S0378-7753(97)02801-2
  11. Rodriguez, A., Vian, J. G., Astrain, D., Martinez, A., 2009, Study of thermoelectric systems applied to electric power generation, Energy Conversion and Management, Vol. 50, pp. 1236-1243. https://doi.org/10.1016/j.enconman.2009.01.036
  12. Yamashita, O., 2009, Effect of linear and non-linear components in the temperature dependences of thermoelectric properties on the cooling performance, Applied Energy, Vol. 86, pp. 1746-1756. https://doi.org/10.1016/j.apenergy.2008.12.006
  13. Yamashita, O., 2008, Effect of temperature dependence of electrical resistivity on the cooling performance of a single thermoelectric element, Applied Energy, Vol. 85, pp.1002-1014. https://doi.org/10.1016/j.apenergy.2008.02.011
  14. Min, G., Rowe, D. M., Kontostavlakis, K., 2004, Thermoelectric figure-of-merit under large temperature differences, Journal of Physics D:Applied Physics, Vol. 37, pp. 1301-1304. https://doi.org/10.1088/0022-3727/37/8/020
  15. Eakburanawat, J., Boonyaroonate, I., 2006, Development of a thermoelectric battery-char ger with microcontroller-based maximum power point tracking technique, Applied Energy, Vol. 83, pp. 687-704. https://doi.org/10.1016/j.apenergy.2005.06.004
  16. Yu, C., Chau, K. T., 2009, Thermoelectric automotive waste heat energy recovery using maximum power point tracking, Energy Conversion and Management, Vol. 50, pp. 1506-1512. https://doi.org/10.1016/j.enconman.2009.02.015
  17. Min, G., Rowe, D. M., in:Rowe, D. M. (Ed.), 1995, CRC Handbook of Thermoelectrics, CRC Press, London.
  18. http://www.huimao.com/series1.htm.