DOI QR코드

DOI QR Code

Solid-Phase Synthesis of 2-Arylbenzothiazole Using Silica Sulfuric Acid under Microwave Irradiation

  • Niralwad, Kirti S. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Shingate, Bapurao B. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University) ;
  • Shingare, Murlidhar S. (Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University)
  • Published : 2010.04.20

Abstract

The condensation of several aromatic/heteroaromatic aldehydes with 2-aminothiophenol catalyzed by silica sulfuric acid under microwave irradiation afforded 2-arylbenzothiazoles in high yields and short reaction times under solvent-free conditions. The major advantages of the present method are good yields, ecofriendly, reusable catalyst, mild and solvent-free reaction conditions.

Keywords

References

  1. Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103,893. https://doi.org/10.1021/cr020033s
  2. Palmer, P. J.; Trigg, R. B.; Warrington, J. V. J. Med. Chem. 1971,14, 248. https://doi.org/10.1021/jm00285a022
  3. Benazzouz, A.; Boraud, T.; Dubédat, P.; Boireau, A.; Stutzmann,J. M.; Gross, C. Eur. J. Pharmacol. 1995, 284, 299. https://doi.org/10.1016/0014-2999(95)00362-O
  4. Beneteau, V.; Besson, T.; Guillard, J.; Leonce, S.; Pfeiffer, B. Eur. J. Med. Chem. 1999, 34, 1053. https://doi.org/10.1016/S0223-5234(99)00130-0
  5. Mathis, C. A.; Bacski, B. J.; Kajdasz, S. T.; McLellan, M. E.; Frosch,M. P.; Hyman, B. T.; Holt, D. P.; Wany, Y.; Huany, G. F.; Debnath,M. L.; Klunk, W. E. Bioorg. Med. Chem. Lett. 2002, 12, 295. https://doi.org/10.1016/S0960-894X(01)00734-X
  6. Mathis, C. A.; Wany, Y.; Holt, D. P.; Huany, G. F.; Debnath, M. L.;Klunk, W. E. J. Med. Chem. 2003, 46, 2740. https://doi.org/10.1021/jm030026b
  7. Ben-Alloum, A.; Bakkas, S.; Soufiaoui, M. Tetrahedron Lett. 1997,38, 6395. https://doi.org/10.1016/S0040-4039(97)01490-1
  8. Roe, A.; Tuker, W. P. J. Heterocycl. Chem. 1965, 2, 148. https://doi.org/10.1002/jhet.5570020208
  9. Hutchinson, I.; Stevens, M. F. G.; Westwell, A. D. Tetrahedron Lett. 2000, 41, 425. https://doi.org/10.1016/S0040-4039(99)02076-6
  10. Alagille, D.; Baldwin, R. M.; Tamagnan, G. D. Tetrahedron Lett. 2005, 46, 1349. https://doi.org/10.1016/j.tetlet.2004.12.111
  11. Majo, V. J.; Prabhakaran, J.; Mann, J. J.; Kumar, J. S. D. Tetrahedron Lett. 2003, 44, 8535. https://doi.org/10.1016/j.tetlet.2003.09.138
  12. Toh, T.; Nagata, K.; Ishikawa, H.; Ohsawa, A. Heterocycles 2004,63, 2769. https://doi.org/10.3987/COM-04-10215
  13. Praveen, C.; Kumar, K. H.; Muralidharan, D.; Perumal, P. T. Tetrahedron2008, 64, 2369. https://doi.org/10.1016/j.tet.2008.01.004
  14. Okimoto, M.; Yoshida, T.; Hoshi, M.; Hattori, K.; Komata, M.; Tomozawa, K.; Chiba, T. Heterocycles 2008, 75, 35. https://doi.org/10.3987/COM-07-11195
  15. Chou, C. H.; Yu, P. C.; Wang, B. C. Tetrahedron Lett. 2008, 49, 4145. https://doi.org/10.1016/j.tetlet.2008.04.118
  16. Chakraborti, A. K.; Selvam, C.; Kaur, G.; Bahagat, S. Synlett 2004, 5, 851.
  17. Mutsushita, H.; Lee, S. H.; Joung, M.; Clapham, B.; Janda, K. D.Tetrahedron Lett. 2004, 45, 313. https://doi.org/10.1016/j.tetlet.2003.10.168
  18. Fawzia, A. Q.; Mekheimer; R. A.; Sadek, K. U. Molecules 2008,13, 2908. https://doi.org/10.3390/molecules13112908
  19. Sedaghat, N.; Naimi-jamal, M. R. 12th International Electronic Conference on Synthetic Organic Chemistry, Nov. 1-30 2008.
  20. Chanada, M.; Arup, D. Heterocycles 2007, 71, 1837. https://doi.org/10.3987/COM-07-11079
  21. Fazaeli, R.; Aliyan, H. Applied Catalysis A 2009, 353, 74. https://doi.org/10.1016/j.apcata.2008.10.035
  22. Algul, O.; Kaessler, A.; Apcin, Y.; Yilmaz, A.; Jose, J. Molecules2008, 13, 736. https://doi.org/10.3390/molecules13040736
  23. Rostamizadeh, S.; Gh. Housaini, S. A. Phosphorus, Sulfur, and Silicon 2005, 180, 1321. https://doi.org/10.1080/10426500590912268
  24. Pratap, U. R.; Mali, J. R.; Jawale, D. V.; Mane, R. A. Tetrahedron Lett. 2009, 50, 1352. https://doi.org/10.1016/j.tetlet.2009.01.032
  25. Guo, H. Y.; Li, J. C.; Shang, Y. L. Chin. Chem. Lett. 2009, 20, 1408. https://doi.org/10.1016/j.cclet.2009.06.037
  26. Kahveci, B.; Ozil, M.; Serdar, M. Heteroatom Chem. 2008, 19, 38. https://doi.org/10.1002/hc.20381
  27. Lange, J. H. M.; Verveer, P. C.; Osnabrug, S. J. M.; Visser, G. M. Tetrahedron Lett. 2001, 42, 1367. https://doi.org/10.1016/S0040-4039(00)02244-9
  28. Cakmaka, O.; Başturkmenb, M.; Kisakurek, D.; Polymer 2004,45, 5421.
  29. Zolfigol, M. A. Tetrahedron 2001, 57, 9509. https://doi.org/10.1016/S0040-4020(01)00960-7
  30. Xian, L. F.; Peng, J. J.; Xia, C. G. Chin. Chem. Lett. 2006, 17,617.
  31. Eshghi, H.; Hassankhani, A. J. Korean Chem. Soc. 2007,51, 361. https://doi.org/10.5012/jkcs.2007.51.4.361
  32. Mirijalili, B. F.; Zolfigol, M. A.; Bamoniri, A. Molecules 2002,751.
  33. Hajipour, A. R.; Mirijalili, B. F.; Zarie, A. Tetrahedron Lett. 2004,45, 6607. https://doi.org/10.1016/j.tetlet.2004.07.023
  34. Sapkal, S. B.; Shelke, K. F.; Shingate, B. B.; Shingare, M. S.Tetrahedron Lett. 2009, 50, 1754. https://doi.org/10.1016/j.tetlet.2009.01.140
  35. Shelke, K. F.; Madje, B. R.;Sapkal, S. B.; Shingate, B. B.; Shingare, M. S. Green Chem. Lett. Rev. 2009, 2, 3. https://doi.org/10.1080/17518250902763101
  36. Sadaphal, S. A.; Sonar, S. S.; Pokalwar, R. U.;Shitole, N. V.; Shingare, M. S. J. Korean Chem. Soc. 2009, 53.
  37. Sonar, S. S.; Kategaonkar, A. H.; Ware, M. V.; Gill, C. H.; Shingare, M. S. Arkivoc 2009, (ii), 138.
  38. Shelke, K. F.; Sapkal, S. B.; Niralwad, K. S.; Shingate, B. B.; Shingare M. S. Cent. Eur. J. Chem. 2009, DOI: 10.2478/s11532-009-0111-2.
  39. Sadaphal, S. A.; Sonar, S. S.; Ware, M. N.; Shingare, M. S. Green Chem. Lett. Rev. 2008, 1, 191. https://doi.org/10.1080/17518250802637819
  40. Kategaonkar, A. H.; Sadaphal, S. A.; Shelke, K. F.; Shingate,B. B.; Shingare, M. S. Ukrainica Bioorganica Acta 2009, 1, 3.
  41. Sonar, S. S.; Sadaphal, S. A.; Pawar, S. S.; Shingate, B. B.; Shingare, M. S. Chin. Chem. Lett. 2009, 20, 557. https://doi.org/10.1016/j.cclet.2009.01.031
  42. Shelke, K. F.; Shingare, M. S. Bull. Korean Chem. Soc. 2009, 30, 2883. https://doi.org/10.5012/bkcs.2009.30.12.2883

Cited by

  1. from Hydrogen Peroxide/Acids/Iodide Potassium or Sodium Systems vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4366
  2. Microwave-induced one-pot Synthesis of Coumarins Using Potassium Dihydrogen Phosphate as a Catalyst Under Solvent-free Condition vol.55, pp.3, 2011, https://doi.org/10.5012/jkcs.2011.55.3.486
  3. Cerium-catalyzed tandem synthesis of 2-substituted benzothiazoles in PEG pp.02682605, 2011, https://doi.org/10.1002/aoc.1750
  4. Sulfonated Porous Carbon (SPC)-Catalyzed Synthesis of Benzothiazole Derivatives in Water vol.187, pp.4, 2012, https://doi.org/10.1080/10426507.2011.631642
  5. Synthesis of Benzothiazoles through Copper-Catalyzed One-Pot Three-Component Reactions with Use of Sodium Hydrosulfide as a Sulfur Surrogate vol.2012, pp.10, 2012, https://doi.org/10.1002/ejoc.201101773
  6. Eco-friendly synthesis of 2-substituted benzothiazoles catalyzed by silica sulfuric acid vol.39, pp.5, 2013, https://doi.org/10.1007/s11164-012-0739-y
  7. -aminothiophenol and its derivatives as versatile synthons vol.35, pp.5, 2014, https://doi.org/10.1080/17415993.2014.934245
  8. Bismuth nitrate as an efficient catalyst for the preparation of 2-arylbenzothiazole derivatives vol.40, pp.4, 2014, https://doi.org/10.1007/s11164-013-1072-9
  9. Titanium Tetrabutoxide (TTBO) as Efficient Catalyst for Rapid One Pot Synthesis of 2-Arylbenzothiazoles under Mild Conditions vol.61, pp.9, 2014, https://doi.org/10.1002/jccs.201400105
  10. An economic, simple and convenient synthesis of 2-aryl/heteroaryl/styryl/alkylbenzothiazoles using SiO2–HNO3 vol.41, pp.7, 2015, https://doi.org/10.1007/s11164-013-1529-x
  11. Synthesis of some benzothiazoles by developing a new protocol using urea nitrate as a catalyst and their antimicrobial activities pp.1741-6000, 2017, https://doi.org/10.1080/17415993.2017.1334781
  12. An efficient synthesis of 2-arylbenzothiazoles using silica sulfuric acid, oxalic acid and aluminum chloride hydrate as heterogeneous and homogeneous catalyst systems vol.76, pp.1, 2010, https://doi.org/10.1135/cccc2010111
  13. An Expeditious Room Temperature Stirring Method for the Synthesis of Isoxazolo[5,4-b]quinolines vol.55, pp.5, 2011, https://doi.org/10.5012/jkcs.2011.55.5.805
  14. Microwave-assisted one-pot synthesis of benzothiazole and benzoxazole libraries as analgesic agents vol.124, pp.3, 2012, https://doi.org/10.1007/s12039-012-0251-3
  15. Weinreb amide as an efficient reagent in the one pot synthesis of benzimidazoles and benzothiazoles vol.54, pp.21, 2010, https://doi.org/10.1016/j.tetlet.2013.03.075
  16. Synthesis of 2-arylbenzothiazoles using nano BF3/SiO2 as a reusable and efficient heterogeneous catalyst under mild conditions vol.35, pp.5, 2014, https://doi.org/10.1080/17415993.2014.917377
  17. Nano-Titania-Supported Sulfonic-Acid-Catalyzed Synthesis of 2-Arylbenzothiazole Derivatives Under Solvent Free Conditions vol.190, pp.11, 2010, https://doi.org/10.1080/10426507.2015.1031753
  18. Facile one-pot synthesis of 2-arylbenzothiazoles catalyzed by H3PO4/TiO2-ZrO2 (1/1) under solvent-free conditions vol.46, pp.7, 2010, https://doi.org/10.1080/00397911.2016.1159697
  19. Silica-supported Zinc Chloride (ZnCl2/SiO2)-induced Efficient Protocol for the Synthesis of N-sulfonyl imines and 2-Arylbenzothiazole vol.16, pp.7, 2010, https://doi.org/10.2174/1570178615666181025120307
  20. Solid‐Supported Materials‐Based Synthesis of 2‐Substituted Benzothiazoles: Recent Developments and Sanguine Future vol.6, pp.25, 2010, https://doi.org/10.1002/slct.202101368
  21. Recent progress in the synthesis of azoles and related five‐membered ring heterocycles using silica‐supported heterogeneous catalysts vol.58, pp.12, 2010, https://doi.org/10.1002/jhet.4348