A Study on the Standardized Finite Element Models for Carbody Structures of Railway Vehicle Made of Sandwich Composites

샌드위치 복합재 적용 철도차량 차체 구조물의 표준유한요소모델 제시 연구

  • 장형진 (한밭대학교 기계설계공학과 경랑구조 및 CAE 실험실) ;
  • 신광복 (한밭대학교 기계공학부) ;
  • 고희영 (한밭대학교 기계설계공학과 경랑구조 및 CAE 실험실) ;
  • 고태환 (한국철도기술연구원 신소재 틸팅열차 시스템 연구단)
  • Received : 2010.03.24
  • Accepted : 2010.07.05
  • Published : 2010.08.26

Abstract

This paper describes the standardized finite element model for carbody structures of railway vehicle made of sandwich composites. Recently, sandwich composites were widely used to railway vehicle due to the improvement of energy efficiency, high specific stiffness and strength, weight reduction and space saving in korea. Therefore, structural integrity should be verified using finite element analysis prior to the manufacture of composite railway vehicle. The standardized finite element model for composite carbody structures was introduced through comparing the results of real structural test under vertical, compressive, twisting load and natural frequency test of various railway vehicles in this study. The results show that the quadratic shell element is suitable to model the reinforced metal frame used to improve the flexural stiffness of sandwich panel compared to beam element, and layered shell and solid element are recommended to model the skin and honeycomb core of sandwich panel compared to sandwich shell element. Also, the proposed standard finite element model has the merit of being applied to crashworthiness problem without modifications of finite element model.

본 논문은 샌드위치 복합재가 적용된 철도차량 차체 구조물을 위한 표준유한요소모델을 제시하였다. 최근 샌드위치 복합재는 높은 굽힘 강성 및 강도를 가지며 차체의 경량화와 공간 확보를 통해 에너지 효율을 향상시킬 수 있어 국내의 많은 분야에서 널리 사용되고 있다. 그러므로 복합재 철도 차량의 제작 전에 유한요소법 등을 통해 구조안전성을 검증해야 한다. 본 연구에서는 다양한 철도차량의 실제 구조시험과 같은 수직, 압축, 비틀림 하중 및 고유진동수 해석을 통해 철도차량 구조물의 표준유한요소모델을 검증 제시하였다. 그 결과, 샌드위치 패널의 굽힘 강성을 향상시키기 위한 보강 금속 프레임에는 빔 요소보다는 사각 쉘 요소가 적절하였으며, 샌드위치 패널의 허니콤 코어와 적층복합재의 경우 적층 쉘 요소와 비교하여 적층 쉘 요소와 솔리드 요소를 사용하는 것이 적절하다. 또한, 제안된 표준유한요소모델은 유한요소모델의 수정 없이 충돌모델에 적용할 수 있는 장점을 가지고 있다.

Keywords

References

  1. S.Y. Chung, S.J. An, P.J. Kim (2009) An Analysis on the Railway Vehicle System for the Introduction of New Transit, Spring Conference of the Korean Society for Railway, Changwon, Korea, pp. 388-395.
  2. K. Lmielinska, L. Guillaumat, R. Wojtyra, M. Castaings (2008) Effects of Manufacturing and Face/Core Bonding on Impact Damage in Glass/Polyester-PVC Foam Core Sandwich Panels, Composite Part B: Engineering, 39, pp. 1034-1041. https://doi.org/10.1016/j.compositesb.2007.11.007
  3. A. Zinno, E. Fusco, A. Prota, G. manfredi (2010) Multiscale Approach for the Design of Composite Sandwich Structures for Train Application, Composite Structures, 92(9), pp. 2208- 2219. https://doi.org/10.1016/j.compstruct.2009.08.044
  4. S.J. Lee, S.H. Cho, J.S. Kim, S. H. Han (2009) The estimation for Environmental Impact of Composite Bodyshell using Life Cycle Assessment (LCA), Spring Conference of the Korean Society for Railway, pp. 1634-1642.
  5. S.H. Lee, J.S. Kim C.K. Lee, Y.K. Kim (2009) The Recovery of Carbon Fiber from Carbon Fiber Reinforced Epoxy Composites applied to Railway Vehicles, Journal of the Korean Society for Railway, 12(6), pp. 1059-1066.
  6. C.K. Moon, Y.U. Kim (1999) Recycling of Composite Materials, The Korean Society for Power System Engineering, 3(4), pp. 5-15.
  7. D. Zenkert (1995) An introduction to sandwich construction Solihull, UK: EMAS Ltd.
  8. J.Y. Lee, K.B. Shin, S.J. Lee (2007) A Study on Failure Evaluation of Korean Low Floor Bus Structures made of Hybrid Sandwich Composite, The Korean Society of Automotive Engineers, 15(6), pp. 50-61.
  9. S. Nangia, A. Mittal, G. Srikanth, S. Biswas (2000) Composite in Railways, Technology Information, Forecasting and Assessment Council, Dept. of Science and Technology, Govt. of India.
  10. K. Prince (2001) Composites Track Down Rail Opportunities, Reinforced Plastics, 45(6), pp. 50-51. https://doi.org/10.1016/S0034-3617(01)80210-1
  11. K.B. Shin, S.H. Hahn (2005) Evaluation of the Structural Integrity of Hybrid Railway Carriage Structures including the ageing Effects of Composite Materials, Composite Structures, 68, pp. 129-137. https://doi.org/10.1016/j.compstruct.2004.03.007
  12. H.Y. Ko, K.B. Shin, J.C. Jeong (2009) A Study on the Comparison of Structural Performance Test and Analysis for Design Verification of Bimodal Tram Vehicle made of Sandwich Composite, Journal of the Korean Society for Railway, 12(4), pp. 518-525.
  13. C.D. Jang, H.C. Song, Y.S. Ha (2002) A Development of Optimal Structure Design System for Ligthweight of Railway Vehicle, Korea Railroad Research Institute.
  14. S.C. Yoon, C.S. Jeon, W.K. Kim, M.Y. Kim (2006) An Evaluation of Structural Strength by Testing the Carbody of Light Composite Material, Spring Conference of the Korean Society for Precision Engineering, 5, pp. 393-394
  15. J.D. Han, Y.S. Lee, K.J. Kang, H.K. Jeong (2008) A Study on Stress Analysis and Experimental Evaluation for the All Composite Structure of Wig Vehicle, Advanced Nondestructive Evaluation II, pp. 209-214.
  16. J.S. Kim, J.C. Jeong, S.J. Lee (2007) Numerical and Experimental Studies on the Deformational Behavior a Composite Train Carbody of the Korean Tilting Train, Composite Structures, 81, pp. 168-175. https://doi.org/10.1016/j.compstruct.2006.08.007
  17. Romil Tanov, Ala Tabiei (2006) Adding Transverse Normal Stresses to Layered Shell Finite Elements for the Analysis of Composite Structures, Composite Structures, 76, pp. 338-344. https://doi.org/10.1016/j.compstruct.2005.05.007
  18. J.Y. Lee, K.B. Shin, J.C. Jeong (2007) Simulation of Low Velocity Impact of Honeycomb Sandwich Composite Panels for the BIMODAL Tram Application, The Korean Society for Composite Materials, 20(4), pp. 42-50.
  19. J.H. Yoon (2006) About Beam Element, ANSYS Magazine for Korean users, TSNE Ltd.
  20. Japanese Industrial Standard (JIS) E 7105 (1994), Test Methods for Static Load of Body Structures of Railway Rolling Stock.