DOI QR코드

DOI QR Code

Experimental Study on Compact type CO2 Gas Cooler(1) - Heat Flowrate and Pressure Drop in a Multi-Tube-In-Tube Helical Coil Type Gas Cooler -

CO2 가스쿨러용 콤팩트열교환기 개발에 관한 연구(1) -다중관식 헬리컬 코일형 가스냉각기내 CO2의 열유량과 압력강하-

  • Published : 2010.01.31

Abstract

The heat flowrate and pressure drop of $CO_2$ in a multi-tube-in-tube helical coil type gas cooler were investigated experimentally. The mass flowrate of $CO_2$ and coolant were varied from 0.06 to 0.075 [kg/s], respectively and the cooling pressure of gas cooler were from 8 to 10 [MPa]. The heat flowrate of $CO_2$ in the test section is increased with the increase in mass flowrate of coolant, the cooling pressure and mass flowrate of $CO_2$. The pressure drop of $CO_2$ is decreased with the decrease in mass flowrate of coolant and $CO_2$, but decreased with increase in cooling pressure of $CO_2$. The heat flowrate of $CO_2$ in the multi-tube-in-tube helical coil type gas cooler is greatly higher than that of $CO_2$ in the double pipe type gas cooler, while the pressure drop of $CO_2$ in the multi-tube-in-tube helical coil type gas cooler is greatly lower than that of $CO_2$ in the double pipe type gas cooler. Therefore, in case of the application of $CO_2$ at the multi-tube-in-tube helical coil type gas cooler, it is expected to carry out the high-efficiency, high-performance and compactness of gas cooler.

다중관식 헬리컬 코일형 가스냉각기내 $CO_2$의 열유량과 압력강하에 대해서 실험적으로 조사하였다. $CO_2$와 냉각수의 유량은 각각 0.06~0.075kg/s이고, 가스냉각기의 냉각압력은 8~10 MPa이다. $CO_2$의 열유량은 냉각수 질량유량, $CO_2$의 질량유량과 냉각압력에 비례하여 증가한다. $CO_2$의 압력강하는 냉각수와 $CO_2$의 질량유량이 감소할수록 감소하지만, $CO_2$의 냉각압력이 증가할수록 감소한다. 다중관식 헬리컬 코일형 가스냉각기내 $CO_2$의 열유량과 압력강하는 각각 이중관식 가스냉각기보다 상당히 높게 또는 낮게 나타났다. 따라서 다중관식 헬리컬 코일형 가스냉각기에 $CO_2$를 적용하는 경우에는 가스냉각기의 고효율화, 고성능화, 컴팩트화가 가능할 것이다.

Keywords

References

  1. L. Yun, Y. C. Kim and M. S. Kim, "Two- phase flow patterns of $CO_2$ in a narrow rectangular channel", Int. Congress of Refrigeration, Washington D. C., pp. 1-7, 2003.
  2. G. Lorentzen and J. Pettersen, "A new, efficient and environmentally benign system for car air-conditioning", Int. J. of Refrigeration, vol. 16, no. 1, pp. 4-12, 1993. https://doi.org/10.1016/0140-7007(93)90014-Y
  3. B. Yun, H. Y. Park, K. C. Yoo and Y. C. Kim, "Air-conditioner cycle simulation using tube-by-tube method", Korean Journal of Air-Conditioning and Refrigeration Engineering, vol. 11, no. 4, pp. 499-510, 1999.
  4. Z. Yuan, M. Michael and D. Jafer, "Forced Convection Boiling Heat Transfer of $CO_2$ in Horizontal Tubes", X th ASME/JSME Joint Thermal Engineering Conference, 1999.
  5. A. M. K. Bredesen, J. Aflekt, A. Pettersen, P. Hafner, G. Neksà, Skaugen, "Studies on $CO_2$ heat exchangers and heat transfer", IEA/IIR Workshop on $CO_2$ Technologies in Refrigeration, Heat Pump, and Air-Conditioning Systems, Trondheim, Norway, May 13-14, 1997.
  6. S. S. Pitla, D. M. Robinson, E. A. Groll, E. A. and S. Ramadhyani, "Heat Transfer from Supercritical Carbon Dioxide in Tube Flow": A Critical Review, HVAC&R research, vol. 4, no. 4, 281-301, 1998. https://doi.org/10.1080/10789669.1998.10391405
  7. D. A. Olson, "Heat transfer of supercritical carbon dioxide flowing in a cooled horizontal tube", Preliminary Proceedings of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue, July 25-28, pp. 251-258, 2000.
  8. S. J. Kline and F. A. McClintock, "Describing Uncertainties in Single Sample Experiments", Mechanical Engineering, vol. 75, no. 1, pp. 3-12, 1953.

Cited by

  1. 온수제조용 CO2 히트펌프의 가스쿨러 열전달 성능 해석 vol.14, pp.11, 2010, https://doi.org/10.5762/kais.2013.14.11.5317
  2. 다중관형 CO2 급탕열교환기의 열적성능에 대한 해석연구 vol.17, pp.8, 2010, https://doi.org/10.5762/kais.2016.17.8.23