DOI QR코드

DOI QR Code

A Study on the Optimum Design of Piled-raft Foundation Considering Pile Head Condition

말뚝두부구속조건을 고려한 말뚝지지 전면기초의 최적단면 설계

  • Received : 2010.09.06
  • Accepted : 2010.10.18
  • Published : 2010.12.31

Abstract

This study describes the three-dimensional behavior of pile foundations based on a numerical study. A series of numerical analyses were performed for connectivity conditions between piles and cap under vertical and lateral loadings. It is shown that a fixed connection between pile and cap is able to transfer significant bending moment through the connection and increases the pile lateral stiffness and the bending moment. Based on the results obtained, it was found that the cross sectional shear force in the raft with fixed head condition was larger than that of pinned head condition. Thus, the reinforcement of pile head and thickness of the raft also increases in fixed pile head condition. From the results, it is found that the overall behavior and cross sectional forces of pile foundations is affected significantly by the pile head conditions. Furthermore, the design of pile foundations with pinned head condition was judged to be less costly and very useful for preliminary design stages.

본 연구에서는 수직 및 수평하중을 받는 말뚝기초의 두부구속조건(고정단, 힌지단)에 따른 3차원 수치해석을 수행하였다. 수평하중과 수직하중 작용 시 말뚝과 기초의 강결합(고정단)이 힌지결합에 비하여 말뚝두부에서 횡방향 강성 및 단면 발생모멘트(휨모멘트)가 크게 나타나고 전면기초(raft)에서 발생하는 전단력도 크게 나타남을 알 수 있었다. 따라서 말뚝의 두부구속조건이 말뚝기초 전체의 거동에 지대한 영향을 미치는 것을 알 수 있었으며, 힌지결합이 강결합과 비교하여 전면기초의 두께 및 말뚝의 철근 배근량을 감소시킬 수 있기 때문에 허용변위를 만족하는 선에서 경제적인 말뚝기초의 설계가 가능할 것으로 판단된다.

Keywords

References

  1. 한국지반공학회 (2009), 구조물기초설계기준 해설, 구미서관, pp. 373.
  2. 대한토목학회 .교량설계핵심기술연구단 (2008), 도로교설계기준 해설, 기문당, pp.905-914.
  3. 원진오, 정상섬 (2005), "교량 말뚝기초 해석기법의 적용성 분석", 한국지반공학회 논문집, 제 21권, 4호, pp.123-134.
  4. Butterfield, R., and P. K. Banerjee (1971), "The problem of pile group-cap interaction", Geotechnique, 21, pp.135-142. https://doi.org/10.1680/geot.1971.21.2.135
  5. Hoit, M. I., Mcvay, M., Hays, C., and Andrade, P. W. (1996), "Nonlinear pile foundation analysis using Florida-Pier", Journal of Bridge Engineering, Vol.1, No.4, pp. 135-142. https://doi.org/10.1061/(ASCE)1084-0702(1996)1:4(135)
  6. Jeong, S. S., Lee, J. H. and Lee, C. J. (2004), "Slip effect at the pile-soil interface on dragload", Computers & Geotechnics, Vol. 31, pp. 115-126.
  7. Lee, J. H., Kim, Y. H., and Jeong, S. S. (2010), "Three-dimensional analysis of bearing behavior of piled raft on soft clay", Computers & Geotechnics, Vol.37, pp.103-114. https://doi.org/10.1016/j.compgeo.2009.07.009
  8. McVay, M. C., T. Shang, and R. Casper (1996), "Centrifuge testing of Fixed-head laterally loaded battered and plumb pile groups in sand", Geotechnical Testing Journal, ASTM, Vol.19, No.3, pp.41-50. https://doi.org/10.1520/GTJ11406J
  9. O'Neill, M. W., O. 1. Ghazzaly., and H. B. Ha (1977), "Analysis of Three-dimensional Pile Groups with Nonlinear Soil Response and Pile-Soil-Pile Interction", Proceedings, Ninth offihore Technology Conference, Vol.II, pp.245-256.
  10. Ottaviani, M. (1975), "Three-Dimensional Finite element Analysis of Vertically loaded pile groups", Geotechnique, 25, pp.159-174. https://doi.org/10.1680/geot.1975.25.2.159
  11. Poulos, H, G. (1979), "Group factors for pile-deflection estimation", J. Geotech. Engrg., ASCE, Vol.105, No.12, pp.1489-1509.
  12. Randoph, M, F. (1981), "The response of flecible piles to lateral loading", Geotechnique, 31, pp.247-259. https://doi.org/10.1680/geot.1981.31.2.247
  13. Reese, L, C., K. Awoshika., P. H. Lam., and S. T. Wang (1990), "Analysis of a group of piles subjected to axial and lateral loading", Group version 2.0, Ensoft, Austin, TX.
  14. Won, J. O., Jeong, S. S., Lee, J. H. and Jang, S. Y. (2006), "Nonlinear three-dimensional analysis of pile group supported columns considering pile cap flexibility", Computers & Geotechnics, Vol.33, pp.355-370. https://doi.org/10.1016/j.compgeo.2006.07.007