DOI QR코드

DOI QR Code

Controlling Size and Distribution for Nano-sized Polystyrene Spheres

  • Yun, Dong-Shin (Composite Materials Team, Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Hyeong-Seok (Composite Materials Team, Korea Institute of Ceramic Engineering & Technology) ;
  • Jang, Ho-Gyeom (Department of Chemistry, Korea University) ;
  • Yoo, Jung-Whan (Composite Materials Team, Korea Institute of Ceramic Engineering & Technology)
  • Received : 2009.11.09
  • Accepted : 2010.03.24
  • Published : 2010.05.20

Abstract

Highly monodisperse polystyrene (PS) nanospheres were fabricated by surfactant-free emulsion polymerization in water using styrene, 2,2'-azobis(2-methyl propionamidine) dihydrochloride (AIBA), and poly(vinyl pyrrolidone) (PVP). The size and distribution of the PS nanospheres were systematically investigated in terms of initiator concentration, stabilizer concentration, reaction temperature, reaction time, and reactant concentration. With increasing AIBA initiator concentration, PS particle sizes are raised proportionally, and can be controlled from 120 to 380 nm. Particle sizes were reduced with increasing PVP concentration. This decrease occurs because a high PVP concentration leads to a large number of primary nuclei in the early stage of polymerization. When the reaction temperature increased, the sizes of the PS particles decrease slightly. The particles grew quickly during the initial reaction stage (1-3 h) and the growth rate became steady-state after 6 h. The PS sizes approximately doubled when the reactant (styrene, PVP, azo-initiator) concentrations were increased by a factor of eight.

Keywords

References

  1. Fudouz, H.; Xia, Y. Adv. Mater. 2003, 15, 892. https://doi.org/10.1002/adma.200304795
  2. Ugelstad, J.; Stenstad, P.; Kilaas, L.; Prestvik, W. S.; Rian, A.; Nustad, K.; Herje, R.; Berge, A. Macromol. Symp. 1996, 101, 491.
  3. Covolan, V. L.; Mei, L. H. I.; Rossi, C. L. Polym. Adv. Technol. 1997, 8, 44. https://doi.org/10.1002/(SICI)1099-1581(199701)8:1<44::AID-PAT613>3.0.CO;2-1
  4. Matsumoto, T.; Ochio, A. Kobunshi Kagaku 1965, 22, 481. https://doi.org/10.1295/koron1944.22.481
  5. Orihara, S.; Konno, M. J. Colloid Interface Sci. 2000, 230, 210. https://doi.org/10.1006/jcis.2000.7088
  6. Aslamazova, T. R.; Tauer, K. Colloids Surf. A 2007, 300, 260. https://doi.org/10.1016/j.colsurfa.2007.01.049
  7. Yamada, Y.; Sakamoto, T.; Gu, S.; Konno, M. J. Colloid Interface Sci. 2005, 281, 49. https://doi.org/10.1016/j.jcis.2004.08.076
  8. Lee, J.; Ha, J. U.; Choe, S.; Lee, C. Shim, S. E. J. Colloid Interface Sci. 2006, 298, 663. https://doi.org/10.1016/j.jcis.2006.01.001
  9. Du, X.; He, J. J. Appl. Polym. Sci. 2008, 108, 1755. https://doi.org/10.1002/app.27774
  10. Bamnolker, H.; Margel, S. J. Polym. Sci. Polym. Chem. Ed. 1996, 34, 1857. https://doi.org/10.1002/(SICI)1099-0518(19960730)34:10<1857::AID-POLA3>3.0.CO;2-M
  11. Yamamoto, T.; Nakayama, M.; Kanda, Y.; Higashitani, K. J. Colloid Interface Sci. 2006, 297, 112. https://doi.org/10.1016/j.jcis.2005.10.025
  12. Wang, D. P.; Sudol, E. D.; Dimonie, V. L.; El-Aasser, M. S. J. Appl. Polym. Sci. 2002, 84, 2692. https://doi.org/10.1002/app.10592
  13. Xu, J.; Li, P.; Wu, C. J. Polym. Sci. Part. A. Polym. Chem. 1999, 37, 2069. https://doi.org/10.1002/(SICI)1099-0518(19990701)37:13<2069::AID-POLA21>3.0.CO;2-7
  14. Chern, C.-S.; Lin, C.-H. Polymer 2000, 41, 4473. https://doi.org/10.1016/S0032-3861(99)00667-9
  15. Yamamoto, T.; Iuoue, M.; Kanda, Y.; Higashitani, K. Chem. Lett. 2004, 33, 1440. https://doi.org/10.1246/cl.2004.1440
  16. Paine, A. J. J. Colloid Interface Sci. 1990, 138, 157. https://doi.org/10.1016/0021-9797(90)90191-P

Cited by

  1. Synthesis of Hollow Silica Nanospheres by Sacrificial Polystyrene Templates for Thermal Insulation Applications vol.2013, pp.1687-8442, 2013, https://doi.org/10.1155/2013/483651
  2. Controlled Synthesis of Spherical Polystyrene Beads and Their Template-Assisted Manual Assembly vol.35, pp.8, 2014, https://doi.org/10.5012/bkcs.2014.35.8.2281
  3. Functionalized polymer spheres via one-step photoinduced synthesis for antimicrobial activity and gene delivery vol.23, pp.25, 2012, https://doi.org/10.1088/0957-4484/23/25/255103
  4. Wavelength tunable InGaN/GaN nano-ring LEDs via nano-sphere lithography vol.7, pp.1, 2017, https://doi.org/10.1038/srep42962
  5. Preparation of monodisperse polystyrene/silica core–shell nano-composite abrasive with controllable size and its chemical mechanical polishing performance on copper vol.258, pp.3, 2010, https://doi.org/10.1016/j.apsusc.2011.09.074
  6. A Novel UV-Shielding and Transparent Polymer Film: When Bioinspired Dopamine–Melanin Hollow Nanoparticles Join Polymers vol.9, pp.41, 2010, https://doi.org/10.1021/acsami.7b08763
  7. Simultaneous control of size and surface functionality of silica particle via growing method vol.28, pp.11, 2010, https://doi.org/10.1016/j.apt.2017.08.019
  8. Novel adsorptive materials by adenosine 5ʹ‐triphosphate imprinted‐polymer over the surface of polystyrene nanospheres for selective separation of adenosine 5ʹ‐triphosphate vol.42, pp.24, 2010, https://doi.org/10.1002/jssc.201900583
  9. TEOS and Na2SiO3 as silica sources: study of synthesis and characterization of hollow silica nanospheres as nano thermal insulation materials vol.10, pp.6, 2020, https://doi.org/10.1007/s13204-020-01330-0
  10. Functional composite hydrogels entrapping polydopamine hollow nanoparticles for highly efficient resistance of skin penetration and photoprotection vol.128, pp.None, 2010, https://doi.org/10.1016/j.msec.2021.112346