Growth and Physiological Adaptations of Tomato Plants (Lycopersicon esculentum Mill) in Response to Water Scarcity in Soil

토양 수분 결핍에 따른 토마토의 생육과 생리적응

  • Hwang, Seung-Mi (Bio-crops Development Division, National Academy of Agricultural Science) ;
  • Kwon, Taek-Ryun (Bio-crops Development Division, National Academy of Agricultural Science) ;
  • Doh, Eun-Soo (Department of Herbal Pharmaceutical Science, Joongbu University) ;
  • Park, Me-Hea (Vegetable Division, National Institute of Horticultural and Herbal Science)
  • 황승미 (국립농업과학원 신작물개발과) ;
  • 권택륜 (국립농업과학원 신작물개발과) ;
  • 도은수 (중부대학교 한방제약과학과) ;
  • 박미희 (국립원예특작과학원 채소과)
  • Received : 2010.08.06
  • Accepted : 2010.10.13
  • Published : 2010.12.31

Abstract

This study aim to investigate fundamentally the growth and physiological responses of tomato plants in responses to two different levels of water deficit, a weak drought stress (-25 kPa) and a severe drought stress (-100 kPa) in soil. The two levels of water deficit were maintained using a micro-irrigation system consisted of soil sensors for the real-time monitoring of soil water content and irrigation modules in a greenhouse experiment. Soil water contents were fluctuated throughout the 30 days treatment period but differed between the two treatments with the average -47 kPa in -25 kPa set treatment and the -119 kPa in -100 kPa set treatment. There were significant differences in plant height between the two different soil water statuses in plant height without differences of the number of nodes. The plants grown in the severe water-deficit treatment had greater accumulation of biomass than the plants in the weak water-deficit treatment. The severe water-deficit treatment (-119 kPa) also induced greater leaf area and leaf dry weight of the plants than the weak water-deficit treatment did, even though there was no difference in leaf area per unit dry weight. These results of growth parameters tested in this study indicate that the severe drought could cause an adaptation of tomato plants to the drought stress with the enhancement of biomass and leaf expansion without changes of leaf thickness. Greater relative water content of leaves and lower osmotic potential of sap expressed from turgid leaves were recorded in the severe water deficit treatment than in the weak water deficit treatment. This finding also postulated physiological adaptation to be better water status under drought stress. The drought imposition affected significantly on photosynthesis, water use efficiency and stomatal conductance of tomato plants. The severe water-deficit treatment increased PSII activities and water use efficiency, but decreased stomatal conductance than the weak water-deficit treatment. However, there were no differences between the two treatments in total photosynthetic capacity. Finally, there were no differences in the number and biomass of fruits. These results suggested that tomato plants have an ability to make adaptation to water deficit conditions through changes in leaf morphology, osmotic potentials, and water use efficiency as well as PSII activity. These adaptation responses should be considered in the screening of drought tolerance of tomato plants.

본 연구는 토마토의 토양 수분결핍조건에서의 생장과 생리적인 반응을 근본적으로 조사하기 위하여 수행되었다. 토양에 두가지 수분조건, 심한 수분결핍(-100kPa)과, 대조구인 약한 수분결핍 처리(-25kPa)는 실시간 토양수분함량을 모니터링을 할 수 있는 토양센서와 관수 모듈을 갖춘 micro-irrigation 시스템을 고안, 온실에서 유지되었다. 토양수분함량은 30일동안 변동되었으며, -25kPa로 맞춰진 처리구는 평균 -47kPa, -100kPa 처리구는 평균 -119kPa로 차이를 나타냈다. 이 두 가지 다른 토양수분상태에서 자란 식물체 사이의 생육을 비교해 본 결과 수분결핍상태(-100kPa)에서 자란 식물체가 대조구인 약한 수분결핍(-25kPa) 처리구에 비해 절간수의 차이없이 신장이 유의하게 감소하였으며 건물중의 축적은 더 높게 나타났다. 또한 건물중 당 엽면적의 차이 없이, 엽면적과 엽건중이 수분 결핍이 약한 처리구에 비해 수분결핍이 심한 처리구가 더 높게 나타났다. 이러한 생육상의 차이는 심한 수분스트레스가 엽두께의 변화없이 생체중의 증가와 엽면적 확보를 통해 토마토의 수분스트레스에 적응을 야기시킬 수 있음을 제시했다. 수분결핍에 따른 토마토 생육기간동안, 생리적변화를 조사한 결과, -100kPa 처리구에서 자란 토마토가 대조구인 -25kPa 처리구에 비해 엽의 상대수분함량의 증가와 잎의 삼투압이 낮게 나타났다. 이는 수분스트레스아래서 토마토의 더 나은 수분상태를 유지하기 위한 생리적인 적응을 설명해준다. 아울러 심한 수분스트레스는 대조구에 비해 PSII 활성과 수분활용도를 증가되었으며, 낮은 기공저항도를 나타내었다. 처리간의 광합성의 차이는 없었으며, 토마토 과실의 수와 생육량의 차이는 없었다. 이러한 결과는 토마토 'Picco'가 엽형태의 변형과 삼투압, 수분활용도와 PSII의 활성을 통해 수분결핍상태에서 적응할 수 있게 만들 능력을 보여준다. 본 연구결과에서 나타난 토마토의 수분스트레스 적응 메커니즘은 토마토의 가뭄저항성 스크린에 있어서 고려되어져야 할 것으로 보인다.

Keywords

References

  1. Anyia, A.O. and H. Herzog. 2004. Water-use efficiency, leaf area and leaf gas exchange of cowpeas under mid-season drought. Europ. J. Agron. 20:327-339. https://doi.org/10.1016/S1161-0301(03)00038-8
  2. Bajji, M., T.M. Kient, and L. Stanley. 2002. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance in durum wheat. Plant Growth Regul. 36:61-70. https://doi.org/10.1023/A:1014732714549
  3. Bohnert, H., D. Nelson, and G. Richard. 1995. Adaptation to environmental stresses. Plant Cell. 7:1099-1111.
  4. Bray, E.A. 1997. Plant responses to water deficit. Trends Plant Sci. 2:48-54. https://doi.org/10.1016/S1360-1385(97)82562-9
  5. Catsky, J. 1960. Determination of water deficit in discs cut out from leaf blades. Biol. Plant. 2:76-77. https://doi.org/10.1007/BF02920701
  6. Chang, C.Y. and M.L. Zhang. 1997. Anatomical structures of young stems and leaves of some Caragana species with their ecological adaptabilities. Bulletin of Botanical Research 17:65-71.
  7. Chaves, M.M., J.S. Pereira, J. Maroco, M.L. Rodrigues, C.P.P. Ricardo, M.L. Osorio, I. Carvalho, T. Faria, and C. Pinheiro. 2002. How plants cope with water stress in the field. Photosynthesis and growth. Ann. Bot. 89:907-916. https://doi.org/10.1093/aob/mcf105
  8. Costa Franca, M.G., A.T. Pham Thi, C. Pimental, R.O. Pereyra Rossiello, Y. Zuily-Fodil, and D. Laffray. 2000. Differences in growth and water relation among Phaseolus vulgaris cultivars in response to induces drought stress. Environ. Exp. Bot. 43:227-337. https://doi.org/10.1016/S0098-8472(99)00060-X
  9. Cuartero, J. and R. Fernandez-Munoz. 1999. Tomato and salinity. Scientia Hort. 78:83-125.
  10. Daniele, C., N.K. Drame, H. Roy-Macauley, S. Braconnier, and D. Laffray. 2005. Analysis of early responses to drought associated with field drought adaptation in Sahelian groundnut (Arachis hypogaea L.) cultivars. Environ. Exp. Bot. 54:219-230. https://doi.org/10.1016/j.envexpbot.2004.07.008
  11. Davies, W.J., M. Bacon, S. Thompson, W. Sobeih, and L. Gonzalez Rodriguez. 2000. Regulation of leaf and fruit growth in plant growing in drying soil: exploitation of the plant's chemical signaling system and hydraulic architecture. J. Exp. Bot. 51:1617-1626. https://doi.org/10.1093/jexbot/51.350.1617
  12. Giovannucci, E. 1999. Tomatoes, tomato-based products, lycopene, and cancer; Review of the epidemio-logic literature. J. Nart. Cancer. Inst. 91:317-331. https://doi.org/10.1093/jnci/91.4.317
  13. Glynn, C.P. and N. Colin. 2002. Identification of drought tolerant woody perennial using chlorophyII fluorescence. J. Arboricult. 28:215-223.
  14. Kang, N.J., M.W. Cho, J.K. Kweon, H.C Rhee, and Y.H. Choi. 2006. Effects of deficit irrigation on the total soluble soilds and fruit yields of fresh tomato. J Bio-Environment Control. 15:335-339.
  15. Lafitte, R.. 2002. Relationship between leaf relative water content during reproductive stage water deficit and grain formation in rice. Field Crops Research. 76:165-174. https://doi.org/10.1016/S0378-4290(02)00037-0
  16. Leung, J. and J. Girauda. 1998. Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:199-222. https://doi.org/10.1146/annurev.arplant.49.1.199
  17. Ma, C.C., Y.B. Gao, J.L. Wang, and H.Y. Guo. 2004. Ecological adaptation of Caragana opulens in photosynthesis and water metabolism in Inner Mongolia Plateau. Acta Phytoecologica Sinica. 28:307-311.
  18. Nobel, P.S. 1983. Biophysical Plant Physiology and Ecology. W.H. Freeman and Company, San Francisco.
  19. Shinozaki, K. and K. Yamaguchi-Shinozaki. 1997. Gene induction in water-stress response. Plant Physiol: 115:327-334. https://doi.org/10.1104/pp.115.2.327
  20. Shinozaki, K. and K. Yamaguchi-Shinozaki. 2000. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology. 3:217-223.
  21. Vacher, J.J. 1998. Responses of two main Andean crops, quinoa (Chenopodium quinoa Willd) and papa amarga (Solanum juzepczukii Buk.) to drought on the Bolivian Altiplano: significance of local adaptation. Agriculture, Ecosystems and Environment. 68:99-108. https://doi.org/10.1016/S0167-8809(97)00140-0
  22. Wudiri, B.B. and D.W. Henderson, 1985. Effects of water stress on flowering and fruit set in processing tomatoes. Sci. Hortic. 27:189-198. https://doi.org/10.1016/0304-4238(85)90022-6
  23. Zavala, M. 2004. Integration of drought tolerance mechanisms in Mediterranean sclerophylls: a functional interpretation of leaf gas exchange simulators. Ecol. Model. 176:211-226 https://doi.org/10.1016/j.ecolmodel.2003.11.013