The Development of Container-type Plant Factory and Growth of Leafy Vegetables as Affected by Different Light Sources

컨테이너 식물공장의 개발과 이를 활용한 광원별 엽채류의 생장특성

  • Um, Yeong-Cheol (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Oh, Sang-Seok (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Lee, Jun-Gu (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Seung-Yu (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Jang, Yoon-Ah (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA)
  • 엄영철 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 오상석 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 이준구 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 김승유 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 장윤아 (농촌진흥청 국립원예특작과학원 채소과)
  • Received : 2010.11.17
  • Accepted : 2010.12.01
  • Published : 2010.12.31

Abstract

For the energy-saving production of fresh vegetables in poor environment such as the Antarctic, a container-type plant factory was designed and developed. To maximize space usage of the 20 feet container ($L5.9m{\times}W2.4m{\times}H2.4m$), a three-level hydroponic cultivation system was installed and the nutrient solution was supplied by bottom watering. Using this system, 3 lettuce cultivars were grown under different the light source (light intensity). After 2 weeks from the transplanting, fluorescent lamp ($145\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) showed the best fresh weight of top part and leaf area. However, After 4 weeks, fluorescent lamp plus metal halide lamp ($150\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) led to the optimum growth of the each lettuce cultivar. The cultivar, 'Cheongchima', showed the best fresh weight of top part and leaf area, followed by 'Jeokchukmyeon' and 'Lollo rosa'. The chlorophyll concentrations (SPAD) showed no significant difference among the sources of lights. However, 'Cheongchima' showed relatively high chlorophyll concentration. With the above results, we found that the growth of lettuce is depend on light intensity and even at same intensity, the growth is different among the cultivars. Therefore, the selection of optimum cultivar should be considered in the plant factory system that has only weak light density.

남극 등 불량환경 하에서 에너지를 절감하면서 신선 채소를 생산할 수 있는 컨테이너 식물공장을 설계하여 개발하였다. 20피트 컨테이너($L5.9m{\times}W2.4m{\times}H2.4m$)에 공간 활용을 최대화하기 위해 3단 수경재배시스템을 설치하였고, 양액공급은 저면급수 방식으로 하였다. 수경재배에서의 광원종류(광강도)에 따른 3가지 상추품종의 생육을 비교하였다. 정식 2주 후 광원종류(광강도)에 따른 상추 3품종의 생육결과는 형광등 $145{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ 처리구에서 지상부 생체중과 엽면적이 양호하였으나, 정식 4주 후에는 형광등 +메탈할라이드등 $150{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$에서 다른 광원시험구보다 생육이 양호하였다. 상추 품종간에는 '청치마상추'의 생체중이나 엽면적이 가장 많았으며, '적축면상추', '롤로로사' 순이었다. 엽록소 농도(SPAD)는 광원종류간에 큰 차이가 없었으며 '청치마상추'가 품종 특성에 맞게 다른 상추보다 높은 값을 나타내었다. 이상의 결과에서 인공광원을 이용한 식물공장에서 상추 재배시 광의 강도에 따라서 식물체 생육이 차이가 있었고, 상추의 품종에 따라 생육정도에 차이가 있었으며 이는 저광도의 식물공장 내에서 알맞은 품종을 선택하여야 할 것으로 판단되었다.

Keywords

References

  1. Chang, Y.S., H.G. Song, and D.E. Kim. 2005. Development of a chain conveyor type row-spacing system for plant factory. J. Bio-Env. Con. 14(1):7-14.
  2. Cho, Y.R., D.W. Hahn, and Y.B. Lee. 1998. Effect of artificial light sources on the growth of crisphead lettuce in plant factory. J. Bio-Env. Con. 7(1):35-42.
  3. Choi, K.Y. and Y.B. Lee. 2001. Effect of electrical conductivity of nutrient solution on tipburn incidence of lettuce (Lactuca sativa L.) in a plant factory using an artificial source. J. Kor. Soc. Hort. Sci. 42:53-56.
  4. Choi, K.Y. and Y.B. Lee. 2003. Effect of air temperature on tipburn incidence of butterhead and leaf lettuce in a plant factory. J. Kor. Soc. Hort. Sci. 44(6):805-808.
  5. Kim, D.E., Y.S. Chang, J.G. Kim, H.H. Kim, D.H. Lee, and J.T. Chang. 2006. Environmental control of plant production factory using programmable logic controller and computer. J. Bio-Env. Con. 15(1):1-7.
  6. Kim, J.H. and S.D. Jang. 2009. Industrializaion condition and possibility of plant factory. Korean Journal of Agricultural Management and Policy. 36:918-948.
  7. Lee, H.J., Y.B. Lee, and J.H. Bae. 2004. Effect of root zone temperature on the growth and quality of singlestemmed rose in cutted rose production factory. J. Bio-Env. Con. 13(4):266-270.
  8. Masamoto, T. 2010. Present status of completely-controlled plant factories. J. SHITA 22(1):2-7. https://doi.org/10.2525/shita.22.2
  9. Matsumoto, K., Y. Tada, H. Shimizu, and S. Shibusawa. 2009. Effect of water supply levels on growth and antioxdative activity of Raphanus sativus L. 'Kaiwaredaikon (Japanese radish sprout)'. J. SHITA 21(2):79-85. https://doi.org/10.2525/shita.21.79
  10. Matsumoto, T., H. Itoh, Y. Shirai, N. Shiraishi, and Y. Uno. 2010. Effects of light quality on growth and nitrate concentration in lettuce. J. SHITA 22(3):140-147. https://doi.org/10.2525/shita.22.140
  11. Nishimura, T., S.M.A. Zobayed, T. Kozai, and E. Goto. 2006. Effect of light quality of blue and red fluorescent lamps on growth of St. John's Wort (Hypericum perforatum L.). J. SHITA 18(3):225-229. https://doi.org/10.2525/shita.18.225
  12. Nozue, H., A. Shimada, Y. Taniguchi, and M. Nozue. 2010. Improving the productivity of plants using an LED light equipped with a control module. J. SHITA 22(2):81-87. https://doi.org/10.2525/shita.22.81
  13. Park, M.H. and Y.B. Lee. 1999a. Effects of $CO_{2}$ concentration, light intensity and nutrient level on the growth of leaf lettuce in a plant factory. J. Kor. Soc. Hort. Sci. 40(4):431-435.
  14. Park, M.H. and Y.B. Lee. 1999b. Effects of light intensity and nutrient level on growth and quality of leaf lettuce in a plant factory. J. Bio-Env. Con. 8(2):108-114.
  15. Son, J.E., J.S. Park, and H.Y. Park. 1999. Analysis of carbon dioxide changes in urban-type plant factory system. J. Kor. Soc. Hort. Sci. 40:205-208.
  16. Technical Information Institute Co. LTD. 2009. A plant factory business strategy and the latest cultivation technology. TIIC, Tokyo, Japan.