Simulation of Heat and Smoke Behavior for Wood and Subway Fires by Fire Dynamics Simulator(FDS)

FDS에 의한 목재 및 지하철 화재의 열 및 연기 거동 시뮬레이션

  • Received : 2010.10.28
  • Accepted : 2010.12.27
  • Published : 2010.12.31

Abstract

In this study, to propose the analysis method of heat and smoke behavior of fire using the CFD-based fire simulator FDS, comparison of the simulation results against the experimental results and the sensitivity of the results to the grid sizes have been investigated. For the wood fire, thermal images captured from the experiments were compared against the FDS simulations, and the maximum temperatures agreed in~4.3 % error, showing the applicability of FDS in the interpretation of the fire phenomena. In the aspect of the sensitivity to the grid size for the subway fire, FDS results of smoke temperature, CO concentration and visibility converged and showed no distinct changes for the grid size < $28(L){\times}28(W){\times}14(H)$, guaranteeing that the FDS fire model set in this research could interpret the fire phenomena successfully.

본 연구에서는 CFD 기반의 화재시뮬레이터인 FDS에 의해 화재에서 열 및 연기 거동을 해석하는 방법을 제시하기 위하여 시뮬레이션 결과와 실험결과를 비교하였고, FDS 시뮬레이션의 그리드 크기변화에 대한 사고결과의 민감도 분석을 실시하였다. 목재 화재에서는 실험에서 얻은 열화상 이미지와 FDS 시뮬레이션을 비교한 결과, 최대온도에서도 약 4.3 %의 적은 오차를 나타내어 FDS에 의해 화재현상을 해석할 수 있었다. 또한 지하철 화재에서 그리드 크기변화에 대한 FDS 결과의 민감도를 분석한 결과, FDS 시뮬레이션의 그리드 크기를 $28(L){\times}28(W){\times}14(H)$보다 작게 하는 경우에는 연기 온도, CO 농도 및 가시거리의 시뮬레이션 결과가 거의 일정한 값을 나타내어 본 연구에서 설정한 화재 모델링으로 FDS에 의해 화재현상을 해석할 수 있음을 알 수 있었다.

Keywords

References

  1. 정국삼, "지하가 시설의 방화대책", 산업안전기술지, 1(1), 34-39, (2001)
  2. Gossard, W. H., "Some major accident investigations of fires in underground rail rapid transit systems", Fire Safety J., 8, 9-14, (1984) https://doi.org/10.1016/0379-7112(84)90049-3
  3. Bulter, K. M. and Mulholland, G. W., "Generation and transport of smoke components", Fire Technol,. 40, 149-76, (2004)
  4. Chow, W. K., "Application of computational fluid dynamics in building engineering", Build. Environ., 31, 425-436, (1996) https://doi.org/10.1016/0360-1323(96)00012-1
  5. McGrattan, K. B. and Forney, G. P., Fire Dynamics Simulator(Ver. 5) Technical- Reference-Guide, National Institute of Standard and Technology Special Publication 1019, Gathersburg, MD, (2008)
  6. McGrattan, K. B. and Forney, G. P., Fire Dynamics Simulator (Version 4.07) Users' Guide, NIST Special Publication 1019, National Institute of Standards and Technology, Gaithersburg, MD, (2006)
  7. Friday, P. A. and Mowrer, F. W., Comparison of FDS Model Predictions with FM/SNL Fire Test Data, NIST GCR 01-810, National Institute of Standards and Technology, Gaithersburg, MD, (2001)
  8. Sutula, J., "Applications of the fire dynamics simulator in fire protection engineering consulting", Fire Protect. Eng., 14, 33-43, (2002)
  9. Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., Computational Fluid Mechanics and Heat Transfer. Hemisphere Publishing Corporation, Philadelphia, Pennsylvania, 11-15, (1984)
  10. Lumley, J. L., "Computational modeling of turbulent flow", Adv. Appl. Mech., 18, 123-176, (1978)
  11. Smagorinsky, J., "General circulation experiments with the primitive equations", Mon. Weather Rev. 91, 99-165, (1963) https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  12. Mulholland, G. W. and Croarkin, C., "Specific extinction coefficient of flame generated smoke", Fire Mater., 24, 227-30, (2000) https://doi.org/10.1002/1099-1018(200009/10)24:5<227::AID-FAM742>3.0.CO;2-9
  13. DiNenno, P. J., Smoke Visibility, The SFPE handbook of fire protection engineering, 3rd ed., Society of Fire Protection Engineers and National Fire Protection Association, MA, (2002)
  14. KOFEIS 0101 제4조(A급화재용소화기의 소화성능시험)